变速器转矩跟踪及离合器接触点估计的无拍自适应反演设计

Wenpeng Wei, Hussein Dourra, G. Zhu
{"title":"变速器转矩跟踪及离合器接触点估计的无拍自适应反演设计","authors":"Wenpeng Wei, Hussein Dourra, G. Zhu","doi":"10.1109/CCTA41146.2020.9206164","DOIUrl":null,"url":null,"abstract":"This research applies the discrete-time adaptive backstepping control scheme to a transfer case clutch actuation system for tracking the reference clutch torque and estimating the clutch touchpoint simultaneously. Note that due to the clutch wear and temperature variation, the transfer case clutch touchpoint is typically unknown and needs to be estimated. Instead of using a seperated algorithm for estimating the touchpoint, the proposed approach utilizes one control scheme for tracking the reference torque and estimating the varying touchpoint at the same time. The deadbeat control law is designed based on a systematic non-Lyapunov-Function-based backstepping control scheme, and the stability of the closed-loop system are guaranteed, where all the closed-loop states are bounded. In addition, due to the deadbeat design, the tracking and estimation convergence rates are quite fast, and as a result, the closed-loop system performance is robust to the external disturbance. The proposed method is validated through simulation study.","PeriodicalId":241335,"journal":{"name":"2020 IEEE Conference on Control Technology and Applications (CCTA)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Deadbeat Adaptive Backstepping Design for Tracking Transfer Case Torque and Estimating its Clutch Touchpoint\",\"authors\":\"Wenpeng Wei, Hussein Dourra, G. Zhu\",\"doi\":\"10.1109/CCTA41146.2020.9206164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research applies the discrete-time adaptive backstepping control scheme to a transfer case clutch actuation system for tracking the reference clutch torque and estimating the clutch touchpoint simultaneously. Note that due to the clutch wear and temperature variation, the transfer case clutch touchpoint is typically unknown and needs to be estimated. Instead of using a seperated algorithm for estimating the touchpoint, the proposed approach utilizes one control scheme for tracking the reference torque and estimating the varying touchpoint at the same time. The deadbeat control law is designed based on a systematic non-Lyapunov-Function-based backstepping control scheme, and the stability of the closed-loop system are guaranteed, where all the closed-loop states are bounded. In addition, due to the deadbeat design, the tracking and estimation convergence rates are quite fast, and as a result, the closed-loop system performance is robust to the external disturbance. The proposed method is validated through simulation study.\",\"PeriodicalId\":241335,\"journal\":{\"name\":\"2020 IEEE Conference on Control Technology and Applications (CCTA)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Conference on Control Technology and Applications (CCTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCTA41146.2020.9206164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Conference on Control Technology and Applications (CCTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCTA41146.2020.9206164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

将离散时间自适应反步控制方法应用于变速箱离合器驱动系统中,同时跟踪离合器参考转矩和估计离合器接触点。请注意,由于离合器磨损和温度变化,变速器离合器接触点通常是未知的,需要估计。该方法采用一种控制方案来同时跟踪参考转矩和估计变化的接触点,而不是使用单独的算法来估计接触点。基于非李雅普诺夫函数的系统反步控制方案设计了无差拍控制律,保证了闭环系统的稳定性,其中所有闭环状态都是有界的。此外,由于无差拍设计,跟踪和估计的收敛速度非常快,从而使闭环系统对外界干扰具有较强的鲁棒性。通过仿真研究验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deadbeat Adaptive Backstepping Design for Tracking Transfer Case Torque and Estimating its Clutch Touchpoint
This research applies the discrete-time adaptive backstepping control scheme to a transfer case clutch actuation system for tracking the reference clutch torque and estimating the clutch touchpoint simultaneously. Note that due to the clutch wear and temperature variation, the transfer case clutch touchpoint is typically unknown and needs to be estimated. Instead of using a seperated algorithm for estimating the touchpoint, the proposed approach utilizes one control scheme for tracking the reference torque and estimating the varying touchpoint at the same time. The deadbeat control law is designed based on a systematic non-Lyapunov-Function-based backstepping control scheme, and the stability of the closed-loop system are guaranteed, where all the closed-loop states are bounded. In addition, due to the deadbeat design, the tracking and estimation convergence rates are quite fast, and as a result, the closed-loop system performance is robust to the external disturbance. The proposed method is validated through simulation study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信