信赖域高斯-牛顿方法的非标准标度矩阵

H. Schwetlick, V. Tiller
{"title":"信赖域高斯-牛顿方法的非标准标度矩阵","authors":"H. Schwetlick, V. Tiller","doi":"10.1137/0910040","DOIUrl":null,"url":null,"abstract":"For solving large nonlinear least-squares problems via trust region Gauss–Newton methods, nonstandard scaling matrices are proposed for scaling the norm of the step. The scaling matrices are rectangular, of full rank, and contain a block of the Jacobian matrix of the residual function.Three types of such matrices are investigated. The corresponding trust region methods are shown to have qualitatively the same convergence properties as the standard method. Nonstandard scaling matrices are especially intended for solving large and structured problems such as orthogonal distance regression or surface fitting. Initial computational experience suggests that for such problems the proposed scaling implies sometimes a modest increase in the number of iterations but reduces the overall computational costs.","PeriodicalId":200176,"journal":{"name":"Siam Journal on Scientific and Statistical Computing","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Nonstandard scaling matrices for trust region Gauss-Newton methods\",\"authors\":\"H. Schwetlick, V. Tiller\",\"doi\":\"10.1137/0910040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For solving large nonlinear least-squares problems via trust region Gauss–Newton methods, nonstandard scaling matrices are proposed for scaling the norm of the step. The scaling matrices are rectangular, of full rank, and contain a block of the Jacobian matrix of the residual function.Three types of such matrices are investigated. The corresponding trust region methods are shown to have qualitatively the same convergence properties as the standard method. Nonstandard scaling matrices are especially intended for solving large and structured problems such as orthogonal distance regression or surface fitting. Initial computational experience suggests that for such problems the proposed scaling implies sometimes a modest increase in the number of iterations but reduces the overall computational costs.\",\"PeriodicalId\":200176,\"journal\":{\"name\":\"Siam Journal on Scientific and Statistical Computing\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Siam Journal on Scientific and Statistical Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1137/0910040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siam Journal on Scientific and Statistical Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/0910040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

为了利用信赖域高斯-牛顿方法求解大型非线性最小二乘问题,提出了非标准标度矩阵来标度阶跃范数。缩放矩阵是矩形的,满秩的,并且包含残差函数的雅可比矩阵的一个块。研究了这类矩阵的三种类型。相应的信赖域方法定性地具有与标准方法相同的收敛性质。非标准标度矩阵特别适用于解决大型和结构化问题,如正交距离回归或曲面拟合。最初的计算经验表明,对于此类问题,所建议的缩放有时意味着迭代次数的适度增加,但降低了总体计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonstandard scaling matrices for trust region Gauss-Newton methods
For solving large nonlinear least-squares problems via trust region Gauss–Newton methods, nonstandard scaling matrices are proposed for scaling the norm of the step. The scaling matrices are rectangular, of full rank, and contain a block of the Jacobian matrix of the residual function.Three types of such matrices are investigated. The corresponding trust region methods are shown to have qualitatively the same convergence properties as the standard method. Nonstandard scaling matrices are especially intended for solving large and structured problems such as orthogonal distance regression or surface fitting. Initial computational experience suggests that for such problems the proposed scaling implies sometimes a modest increase in the number of iterations but reduces the overall computational costs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信