具有记忆振荡网络的Margolus化学波逻辑门

Theodoros Panagiotis Chatzinikolaou, Iosif-Angelos Fyrigos, V. Ntinas, Stavros Kitsios, P. Bousoulas, Michail-Antisthenis I. Tsompanas, D. Tsoukalas, A. Adamatzky, G. Sirakoulis
{"title":"具有记忆振荡网络的Margolus化学波逻辑门","authors":"Theodoros Panagiotis Chatzinikolaou, Iosif-Angelos Fyrigos, V. Ntinas, Stavros Kitsios, P. Bousoulas, Michail-Antisthenis I. Tsompanas, D. Tsoukalas, A. Adamatzky, G. Sirakoulis","doi":"10.1109/icecs53924.2021.9665632","DOIUrl":null,"url":null,"abstract":"As conventional computing systems are striving to increase their performance in order to compensate for the growing demand of solving difficult problems, emergent and unconventional computing approaches are being developed to provide alternatives on efficiently solving a plethora of those complex problems. Chemical computers which use chemical reactions as their main characteristic can be strong candidates for these new approaches. Oscillating networks of novel nano-devices like memristors are also able to perform calculations with their rich dynamics and their strong memory and computing features. In this work, the combination of the aforementioned approaches is achieved that capitalizes on the threshold switching mechanism of low-voltage CBRAM devices to establish a memristive oscillating circuitry that is able to act as a chemical reaction - diffusion system through the network nodes' interactions. The propagation of the voltage signals throughout the medium can be used to establish a mechanism for specific logic operations according to the desired logic function leading to the nano-implementation of Margolus chemical wave logic gate.","PeriodicalId":448558,"journal":{"name":"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Margolus Chemical Wave Logic Gate with Memristive Oscillatory Networks\",\"authors\":\"Theodoros Panagiotis Chatzinikolaou, Iosif-Angelos Fyrigos, V. Ntinas, Stavros Kitsios, P. Bousoulas, Michail-Antisthenis I. Tsompanas, D. Tsoukalas, A. Adamatzky, G. Sirakoulis\",\"doi\":\"10.1109/icecs53924.2021.9665632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As conventional computing systems are striving to increase their performance in order to compensate for the growing demand of solving difficult problems, emergent and unconventional computing approaches are being developed to provide alternatives on efficiently solving a plethora of those complex problems. Chemical computers which use chemical reactions as their main characteristic can be strong candidates for these new approaches. Oscillating networks of novel nano-devices like memristors are also able to perform calculations with their rich dynamics and their strong memory and computing features. In this work, the combination of the aforementioned approaches is achieved that capitalizes on the threshold switching mechanism of low-voltage CBRAM devices to establish a memristive oscillating circuitry that is able to act as a chemical reaction - diffusion system through the network nodes' interactions. The propagation of the voltage signals throughout the medium can be used to establish a mechanism for specific logic operations according to the desired logic function leading to the nano-implementation of Margolus chemical wave logic gate.\",\"PeriodicalId\":448558,\"journal\":{\"name\":\"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icecs53924.2021.9665632\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icecs53924.2021.9665632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

由于传统的计算系统正在努力提高其性能,以弥补日益增长的解决难题的需求,新兴的和非常规的计算方法正在开发,以提供有效解决这些复杂问题的替代方案。以化学反应为主要特征的化学计算机可能是这些新方法的有力候选者。由忆阻器等新型纳米器件组成的振荡网络也能以其丰富的动态特性、强大的记忆和计算特性进行计算。在这项工作中,上述方法的结合实现了,利用低压CBRAM器件的阈值开关机制建立了一个忆阻振荡电路,该电路能够通过网络节点的相互作用作为化学反应-扩散系统。利用电压信号在介质中的传播,可以根据期望的逻辑功能建立特定的逻辑运算机制,从而实现Margolus化学波逻辑门的纳米化实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Margolus Chemical Wave Logic Gate with Memristive Oscillatory Networks
As conventional computing systems are striving to increase their performance in order to compensate for the growing demand of solving difficult problems, emergent and unconventional computing approaches are being developed to provide alternatives on efficiently solving a plethora of those complex problems. Chemical computers which use chemical reactions as their main characteristic can be strong candidates for these new approaches. Oscillating networks of novel nano-devices like memristors are also able to perform calculations with their rich dynamics and their strong memory and computing features. In this work, the combination of the aforementioned approaches is achieved that capitalizes on the threshold switching mechanism of low-voltage CBRAM devices to establish a memristive oscillating circuitry that is able to act as a chemical reaction - diffusion system through the network nodes' interactions. The propagation of the voltage signals throughout the medium can be used to establish a mechanism for specific logic operations according to the desired logic function leading to the nano-implementation of Margolus chemical wave logic gate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信