基于离散拉格朗日乘子方法的局部行为聚合

Yi Tang, Jiming Liu, Xiaolong Jin
{"title":"基于离散拉格朗日乘子方法的局部行为聚合","authors":"Yi Tang, Jiming Liu, Xiaolong Jin","doi":"10.1109/IAT.2004.1342984","DOIUrl":null,"url":null,"abstract":"When solving a distributed problem based on a multi-agent system, the local behaviors of agents are aggregated to the global behaviors of the multi-agent system towards a solution state. This work presents a distributed discrete Lagrange multiplier (DDLM) method for solving distributed constraint satisfaction problems (distributed CSPs). In this method, the local behaviors of agents are aggregated as a descent direction of an objective function corresponding to the problem at hand. Thus, a trend to a solution state are formed. Furthermore, we provide three techniques to speed up the aggregation of agents' local behaviors. Through experiments on benchmark graph coloring problems, we validate the effectiveness of the presented DDLM method as well as the three techniques in solving distributed CSPs.","PeriodicalId":281008,"journal":{"name":"Proceedings. IEEE/WIC/ACM International Conference on Intelligent Agent Technology, 2004. (IAT 2004).","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aggregating local behaviors based upon a discrete Lagrange multiplier method\",\"authors\":\"Yi Tang, Jiming Liu, Xiaolong Jin\",\"doi\":\"10.1109/IAT.2004.1342984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When solving a distributed problem based on a multi-agent system, the local behaviors of agents are aggregated to the global behaviors of the multi-agent system towards a solution state. This work presents a distributed discrete Lagrange multiplier (DDLM) method for solving distributed constraint satisfaction problems (distributed CSPs). In this method, the local behaviors of agents are aggregated as a descent direction of an objective function corresponding to the problem at hand. Thus, a trend to a solution state are formed. Furthermore, we provide three techniques to speed up the aggregation of agents' local behaviors. Through experiments on benchmark graph coloring problems, we validate the effectiveness of the presented DDLM method as well as the three techniques in solving distributed CSPs.\",\"PeriodicalId\":281008,\"journal\":{\"name\":\"Proceedings. IEEE/WIC/ACM International Conference on Intelligent Agent Technology, 2004. (IAT 2004).\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-09-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. IEEE/WIC/ACM International Conference on Intelligent Agent Technology, 2004. (IAT 2004).\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAT.2004.1342984\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE/WIC/ACM International Conference on Intelligent Agent Technology, 2004. (IAT 2004).","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAT.2004.1342984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在求解基于多智能体系统的分布式问题时,将智能体的局部行为聚合为多智能体系统的全局行为,以达到求解状态。本文提出了一种求解分布式约束满足问题的分布式离散拉格朗日乘子(DDLM)方法。在该方法中,智能体的局部行为被聚合为与手头问题对应的目标函数的下降方向。这样,就形成了一种趋向于解状态的趋势。此外,我们提供了三种技术来加速智能体局部行为的聚合。通过对基准图着色问题的实验,我们验证了所提出的DDLM方法以及三种技术在求解分布式csp问题中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aggregating local behaviors based upon a discrete Lagrange multiplier method
When solving a distributed problem based on a multi-agent system, the local behaviors of agents are aggregated to the global behaviors of the multi-agent system towards a solution state. This work presents a distributed discrete Lagrange multiplier (DDLM) method for solving distributed constraint satisfaction problems (distributed CSPs). In this method, the local behaviors of agents are aggregated as a descent direction of an objective function corresponding to the problem at hand. Thus, a trend to a solution state are formed. Furthermore, we provide three techniques to speed up the aggregation of agents' local behaviors. Through experiments on benchmark graph coloring problems, we validate the effectiveness of the presented DDLM method as well as the three techniques in solving distributed CSPs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信