E. Pencheva, I. Atanasov, Ivaylo Asenov, V. Trifonov
{"title":"在网络边缘提供终端行为预测","authors":"E. Pencheva, I. Atanasov, Ivaylo Asenov, V. Trifonov","doi":"10.1109/ET.2019.8878631","DOIUrl":null,"url":null,"abstract":"Data analytics will play a key role in fifth generation (5G) networks. Multi-access edge computing (MEC) which distributes cloud intelligence at the network edge can provide analytics data that optimize user quality of experience and network performance. In this paper, we propose an extension to existing MEC service which provides actual radio network information. The proposed extension enables applications deployed at the network edge to send prognostic user behavior information to the network.","PeriodicalId":306452,"journal":{"name":"2019 IEEE XXVIII International Scientific Conference Electronics (ET)","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Provisioning of UE Behavior Prognostics at the Network Edge\",\"authors\":\"E. Pencheva, I. Atanasov, Ivaylo Asenov, V. Trifonov\",\"doi\":\"10.1109/ET.2019.8878631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data analytics will play a key role in fifth generation (5G) networks. Multi-access edge computing (MEC) which distributes cloud intelligence at the network edge can provide analytics data that optimize user quality of experience and network performance. In this paper, we propose an extension to existing MEC service which provides actual radio network information. The proposed extension enables applications deployed at the network edge to send prognostic user behavior information to the network.\",\"PeriodicalId\":306452,\"journal\":{\"name\":\"2019 IEEE XXVIII International Scientific Conference Electronics (ET)\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE XXVIII International Scientific Conference Electronics (ET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ET.2019.8878631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE XXVIII International Scientific Conference Electronics (ET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ET.2019.8878631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Provisioning of UE Behavior Prognostics at the Network Edge
Data analytics will play a key role in fifth generation (5G) networks. Multi-access edge computing (MEC) which distributes cloud intelligence at the network edge can provide analytics data that optimize user quality of experience and network performance. In this paper, we propose an extension to existing MEC service which provides actual radio network information. The proposed extension enables applications deployed at the network edge to send prognostic user behavior information to the network.