微积分中代换解析的平均情况分析

Maciej Bendkowski
{"title":"微积分中代换解析的平均情况分析","authors":"Maciej Bendkowski","doi":"10.4230/LIPIcs.FSCD.2019.7","DOIUrl":null,"url":null,"abstract":"Substitution resolution supports the computational character of $\\beta$-reduction, complementing its execution with a capture-avoiding exchange of terms for bound variables. Alas, the meta-level definition of substitution, masking a non-trivial computation, turns $\\beta$-reduction into an atomic rewriting rule, despite its varying operational complexity. In the current paper we propose a somewhat indirect average-case analysis of substitution resolution in the classic $\\lambda$-calculus, based on the quantitative analysis of substitution in $\\lambda\\upsilon$, an extension of $\\lambda$-calculus internalising the $\\upsilon$-calculus of explicit substitutions. Within this framework, we show that for any fixed $n \\geq 0$, the probability that a uniformly random, conditioned on size, $\\lambda\\upsilon$-term $\\upsilon$-normalises in $n$ normal-order (i.e. leftmost-outermost) reduction steps tends to a computable limit as the term size tends to infinity. For that purpose, we establish an effective hierarchy $\\left(\\mathscr{G}_n\\right)_n$ of regular tree grammars partitioning $\\upsilon$-normalisable terms into classes of terms normalising in $n$ normal-order rewriting steps. The main technical ingredient in our construction is an inductive approach to the construction of $\\mathscr{G}_{n+1}$ out of $\\mathscr{G}_n$ based, in turn, on the algorithmic construction of finite intersection partitions, inspired by Robinson's unification algorithm. Finally, we briefly discuss applications of our approach to other term rewriting systems, focusing on two closely related formalisms, i.e. the full $\\lambda\\upsilon$-calculus and combinatory logic.","PeriodicalId":284975,"journal":{"name":"International Conference on Formal Structures for Computation and Deduction","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards the Average-Case Analysis of Substitution Resolution in Lambda-Calculus\",\"authors\":\"Maciej Bendkowski\",\"doi\":\"10.4230/LIPIcs.FSCD.2019.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Substitution resolution supports the computational character of $\\\\beta$-reduction, complementing its execution with a capture-avoiding exchange of terms for bound variables. Alas, the meta-level definition of substitution, masking a non-trivial computation, turns $\\\\beta$-reduction into an atomic rewriting rule, despite its varying operational complexity. In the current paper we propose a somewhat indirect average-case analysis of substitution resolution in the classic $\\\\lambda$-calculus, based on the quantitative analysis of substitution in $\\\\lambda\\\\upsilon$, an extension of $\\\\lambda$-calculus internalising the $\\\\upsilon$-calculus of explicit substitutions. Within this framework, we show that for any fixed $n \\\\geq 0$, the probability that a uniformly random, conditioned on size, $\\\\lambda\\\\upsilon$-term $\\\\upsilon$-normalises in $n$ normal-order (i.e. leftmost-outermost) reduction steps tends to a computable limit as the term size tends to infinity. For that purpose, we establish an effective hierarchy $\\\\left(\\\\mathscr{G}_n\\\\right)_n$ of regular tree grammars partitioning $\\\\upsilon$-normalisable terms into classes of terms normalising in $n$ normal-order rewriting steps. The main technical ingredient in our construction is an inductive approach to the construction of $\\\\mathscr{G}_{n+1}$ out of $\\\\mathscr{G}_n$ based, in turn, on the algorithmic construction of finite intersection partitions, inspired by Robinson's unification algorithm. Finally, we briefly discuss applications of our approach to other term rewriting systems, focusing on two closely related formalisms, i.e. the full $\\\\lambda\\\\upsilon$-calculus and combinatory logic.\",\"PeriodicalId\":284975,\"journal\":{\"name\":\"International Conference on Formal Structures for Computation and Deduction\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Formal Structures for Computation and Deduction\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4230/LIPIcs.FSCD.2019.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Formal Structures for Computation and Deduction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.FSCD.2019.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

替换解析支持$\beta$ -reduction的计算特性,并通过避免捕获绑定变量的术语交换来补充其执行。唉,替换的元级别定义掩盖了一个重要的计算,将$\beta$ -reduction转换为原子重写规则,尽管其操作复杂性各不相同。在本文中,我们基于$\lambda\upsilon$中替换的定量分析,提出了经典$\lambda$ -演算中替换决议的间接平均情况分析,这是$\lambda$ -演算的扩展,内化了$\upsilon$ -演算的显式替换。在这个框架内,我们证明了对于任何固定的$n \geq 0$,一个均匀随机的,以大小为条件的$\lambda\upsilon$ -term $\upsilon$ -在$n$正常顺序(即最左最外)约简步骤中归一化的概率趋于可计算的极限,因为项大小趋于无穷大。为此,我们建立了一个有效的层次结构$\left(\mathscr{G}_n\right)_n$,将规则树语法将$\upsilon$ -可规范化的术语划分为在$n$正常顺序重写步骤中规范化的术语类。在我们的构造中,主要的技术成分是一种从$\mathscr{G}_n$中构造$\mathscr{G}_{n+1}$的归纳方法,反过来,基于有限交集分区的算法构造,受到罗宾逊统一算法的启发。最后,我们简要地讨论了我们的方法在其他术语重写系统中的应用,重点是两个密切相关的形式,即完整$\lambda\upsilon$ -演算和组合逻辑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards the Average-Case Analysis of Substitution Resolution in Lambda-Calculus
Substitution resolution supports the computational character of $\beta$-reduction, complementing its execution with a capture-avoiding exchange of terms for bound variables. Alas, the meta-level definition of substitution, masking a non-trivial computation, turns $\beta$-reduction into an atomic rewriting rule, despite its varying operational complexity. In the current paper we propose a somewhat indirect average-case analysis of substitution resolution in the classic $\lambda$-calculus, based on the quantitative analysis of substitution in $\lambda\upsilon$, an extension of $\lambda$-calculus internalising the $\upsilon$-calculus of explicit substitutions. Within this framework, we show that for any fixed $n \geq 0$, the probability that a uniformly random, conditioned on size, $\lambda\upsilon$-term $\upsilon$-normalises in $n$ normal-order (i.e. leftmost-outermost) reduction steps tends to a computable limit as the term size tends to infinity. For that purpose, we establish an effective hierarchy $\left(\mathscr{G}_n\right)_n$ of regular tree grammars partitioning $\upsilon$-normalisable terms into classes of terms normalising in $n$ normal-order rewriting steps. The main technical ingredient in our construction is an inductive approach to the construction of $\mathscr{G}_{n+1}$ out of $\mathscr{G}_n$ based, in turn, on the algorithmic construction of finite intersection partitions, inspired by Robinson's unification algorithm. Finally, we briefly discuss applications of our approach to other term rewriting systems, focusing on two closely related formalisms, i.e. the full $\lambda\upsilon$-calculus and combinatory logic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信