Enrica d’Afflisio, P. Braca, L. Chisci, G. Battistelli, P. Willett
{"title":"利用异构信息源的恶意数据欺骗和名义路由隐身偏差的海上异常检测","authors":"Enrica d’Afflisio, P. Braca, L. Chisci, G. Battistelli, P. Willett","doi":"10.23919/fusion49465.2021.9627049","DOIUrl":null,"url":null,"abstract":"Based on a proper stochastic formulation of the vessel dynamic, exploiting piecewise Ornstein-Uhlenbeck (OU) mean-reverting processes, we propose an effective anomaly detection procedure to jointly reveal Automatic Identification System (AIS) data spoofing and/or surreptitious deviations from the planned route. Supported by reliable information from monitoring systems (coastal radars and spaceborne satellite sensors), an expanded five-hypothesis testing problem is posed involving two anomaly detection strategies based on the Generalized Likelihood Ratio Test (GLRT) and the Model Order Selection (MOS) methodologies.","PeriodicalId":226850,"journal":{"name":"2021 IEEE 24th International Conference on Information Fusion (FUSION)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maritime Anomaly Detection of Malicious Data Spoofing and Stealth Deviations from Nominal Route Exploiting Heterogeneous Sources of Information\",\"authors\":\"Enrica d’Afflisio, P. Braca, L. Chisci, G. Battistelli, P. Willett\",\"doi\":\"10.23919/fusion49465.2021.9627049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on a proper stochastic formulation of the vessel dynamic, exploiting piecewise Ornstein-Uhlenbeck (OU) mean-reverting processes, we propose an effective anomaly detection procedure to jointly reveal Automatic Identification System (AIS) data spoofing and/or surreptitious deviations from the planned route. Supported by reliable information from monitoring systems (coastal radars and spaceborne satellite sensors), an expanded five-hypothesis testing problem is posed involving two anomaly detection strategies based on the Generalized Likelihood Ratio Test (GLRT) and the Model Order Selection (MOS) methodologies.\",\"PeriodicalId\":226850,\"journal\":{\"name\":\"2021 IEEE 24th International Conference on Information Fusion (FUSION)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 24th International Conference on Information Fusion (FUSION)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/fusion49465.2021.9627049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 24th International Conference on Information Fusion (FUSION)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/fusion49465.2021.9627049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Maritime Anomaly Detection of Malicious Data Spoofing and Stealth Deviations from Nominal Route Exploiting Heterogeneous Sources of Information
Based on a proper stochastic formulation of the vessel dynamic, exploiting piecewise Ornstein-Uhlenbeck (OU) mean-reverting processes, we propose an effective anomaly detection procedure to jointly reveal Automatic Identification System (AIS) data spoofing and/or surreptitious deviations from the planned route. Supported by reliable information from monitoring systems (coastal radars and spaceborne satellite sensors), an expanded five-hypothesis testing problem is posed involving two anomaly detection strategies based on the Generalized Likelihood Ratio Test (GLRT) and the Model Order Selection (MOS) methodologies.