树加权消息传递算法的全流水线FPGA设计

Wenlai Zhao, H. Fu, Guangwen Yang
{"title":"树加权消息传递算法的全流水线FPGA设计","authors":"Wenlai Zhao, H. Fu, Guangwen Yang","doi":"10.1109/FCCM.2014.59","DOIUrl":null,"url":null,"abstract":"A Markov random field (MRF) is a set of random variables demonstrating a Markov property in the form of an undirected graph. Maximum a posteriori probability (MAP) inference is a class of methods that seek solutions of problems modeled by MRF. MRF has been a very popular and powerful tool in computer vision problems such as stereo matching and image segmentation [1]. Finding the optimal solution of the MRF MAP problem is an NP-hard problem. Inference algorithms often involve a heavy computation load. Therefore, most related works have focused on improving the performance and efficiency of algorithms. Hardware-based acceleration is one of the most practical solutions.","PeriodicalId":246162,"journal":{"name":"2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Fully-Pipelined FPGA Design for Tree-Reweighted Message Passing Algorithm\",\"authors\":\"Wenlai Zhao, H. Fu, Guangwen Yang\",\"doi\":\"10.1109/FCCM.2014.59\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Markov random field (MRF) is a set of random variables demonstrating a Markov property in the form of an undirected graph. Maximum a posteriori probability (MAP) inference is a class of methods that seek solutions of problems modeled by MRF. MRF has been a very popular and powerful tool in computer vision problems such as stereo matching and image segmentation [1]. Finding the optimal solution of the MRF MAP problem is an NP-hard problem. Inference algorithms often involve a heavy computation load. Therefore, most related works have focused on improving the performance and efficiency of algorithms. Hardware-based acceleration is one of the most practical solutions.\",\"PeriodicalId\":246162,\"journal\":{\"name\":\"2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FCCM.2014.59\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2014.59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

马尔可夫随机场(MRF)是以无向图的形式表现出马尔可夫性质的一组随机变量。最大后验概率(MAP)推理是一类寻求MRF模型问题解的方法。在立体匹配和图像分割等计算机视觉问题中,核磁共振成像已经成为一种非常流行和强大的工具。寻找MRF MAP问题的最优解是一个np困难问题。推理算法通常涉及大量的计算负载。因此,大多数相关工作都集中在提高算法的性能和效率上。基于硬件的加速是最实用的解决方案之一。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Fully-Pipelined FPGA Design for Tree-Reweighted Message Passing Algorithm
A Markov random field (MRF) is a set of random variables demonstrating a Markov property in the form of an undirected graph. Maximum a posteriori probability (MAP) inference is a class of methods that seek solutions of problems modeled by MRF. MRF has been a very popular and powerful tool in computer vision problems such as stereo matching and image segmentation [1]. Finding the optimal solution of the MRF MAP problem is an NP-hard problem. Inference algorithms often involve a heavy computation load. Therefore, most related works have focused on improving the performance and efficiency of algorithms. Hardware-based acceleration is one of the most practical solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信