推断社会网络中的个人影响

Haisu Zhang, Wenyan Gan, Feng Xu
{"title":"推断社会网络中的个人影响","authors":"Haisu Zhang, Wenyan Gan, Feng Xu","doi":"10.1109/WISA.2012.53","DOIUrl":null,"url":null,"abstract":"We study the integration of individuals attributes to infer their influence ability in social network in this paper. The influence between individuals is usually asymmetric and can propagate via edges gradually. We suggest an Influence Factor Graph(IFG) which can integrate different node and edge features into a uniform inferring model. And for each node the model can compute personalized influence ability value. Experiment results in Zarchary and Wikipedia co-editing social networks show that, the model can depict influence reasonably and reveal some interesting social influence rules.","PeriodicalId":313228,"journal":{"name":"2012 Ninth Web Information Systems and Applications Conference","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Inferring Individual Influence in Social Network\",\"authors\":\"Haisu Zhang, Wenyan Gan, Feng Xu\",\"doi\":\"10.1109/WISA.2012.53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the integration of individuals attributes to infer their influence ability in social network in this paper. The influence between individuals is usually asymmetric and can propagate via edges gradually. We suggest an Influence Factor Graph(IFG) which can integrate different node and edge features into a uniform inferring model. And for each node the model can compute personalized influence ability value. Experiment results in Zarchary and Wikipedia co-editing social networks show that, the model can depict influence reasonably and reveal some interesting social influence rules.\",\"PeriodicalId\":313228,\"journal\":{\"name\":\"2012 Ninth Web Information Systems and Applications Conference\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Ninth Web Information Systems and Applications Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WISA.2012.53\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Ninth Web Information Systems and Applications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WISA.2012.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文通过研究个体属性的整合来推断其在社会网络中的影响能力。个体之间的影响通常是不对称的,可以通过边缘逐渐传播。我们提出了一种影响因子图(IFG),它可以将不同的节点和边缘特征整合到一个统一的推断模型中。对于每个节点,该模型可以计算出个性化的影响能力值。在zachary和Wikipedia共同编辑的社交网络上的实验结果表明,该模型能够合理地描述影响力,揭示出一些有趣的社会影响规律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inferring Individual Influence in Social Network
We study the integration of individuals attributes to infer their influence ability in social network in this paper. The influence between individuals is usually asymmetric and can propagate via edges gradually. We suggest an Influence Factor Graph(IFG) which can integrate different node and edge features into a uniform inferring model. And for each node the model can compute personalized influence ability value. Experiment results in Zarchary and Wikipedia co-editing social networks show that, the model can depict influence reasonably and reveal some interesting social influence rules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信