信用风险模型回溯测试的健全巴塞尔协议III合规框架

F. Anfuso, Dimitris Karyampas, A. Nawroth
{"title":"信用风险模型回溯测试的健全巴塞尔协议III合规框架","authors":"F. Anfuso, Dimitris Karyampas, A. Nawroth","doi":"10.2139/ssrn.2264620","DOIUrl":null,"url":null,"abstract":"A central component of the Basel III (B3) document is the \"Sound practices for backtesting\", i.e., a summary of strict regulatory guidances on how to validate and backtest Internal Method Models (IMM) for credit exposure. In the present work, we define a complete statistical framework to backtest credit exposure models, highlighting the features of our proposal vs. the new regulatory requirements. The framework contains four main pillars: 1. The risk factor backtesting, i.e. the assessment of the forecasting ability of the Stochastic Differential Equations (SDE) used to describe the dynamics of the single risk factors. 2. The correlations backtesting, i.e. the assessment of the statistical estimators used to describe the cross-asset evolution. 3. The portfolio backtesting, i.e. the assessment of the complete exposure model (:= SDEs correlations pricing) for portfolios that are representative of the firm’s exposure. 4. The computation of the capital buffer, i.e. the extra amount of capital that the firm should hold if the model framework is not adequate (see outcome of the three pillars above). We show with concrete examples in the cases of collateralized and uncollateralized models how to perform distributional tests w.r.t. different risk metrics. We produce discriminatory power analysis for all the tests introduced, providing exact methods to aggregate backtesting results across forecasting horizons. Most importantly, the third and the fourth pillars define a solid quantitative approach to compute capital remedies for potential model deficiencies.","PeriodicalId":382921,"journal":{"name":"ERN: Regulation (European) (Topic)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Sound Basel III Compliant Framework for Backtesting Credit Exposure Models\",\"authors\":\"F. Anfuso, Dimitris Karyampas, A. Nawroth\",\"doi\":\"10.2139/ssrn.2264620\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A central component of the Basel III (B3) document is the \\\"Sound practices for backtesting\\\", i.e., a summary of strict regulatory guidances on how to validate and backtest Internal Method Models (IMM) for credit exposure. In the present work, we define a complete statistical framework to backtest credit exposure models, highlighting the features of our proposal vs. the new regulatory requirements. The framework contains four main pillars: 1. The risk factor backtesting, i.e. the assessment of the forecasting ability of the Stochastic Differential Equations (SDE) used to describe the dynamics of the single risk factors. 2. The correlations backtesting, i.e. the assessment of the statistical estimators used to describe the cross-asset evolution. 3. The portfolio backtesting, i.e. the assessment of the complete exposure model (:= SDEs correlations pricing) for portfolios that are representative of the firm’s exposure. 4. The computation of the capital buffer, i.e. the extra amount of capital that the firm should hold if the model framework is not adequate (see outcome of the three pillars above). We show with concrete examples in the cases of collateralized and uncollateralized models how to perform distributional tests w.r.t. different risk metrics. We produce discriminatory power analysis for all the tests introduced, providing exact methods to aggregate backtesting results across forecasting horizons. Most importantly, the third and the fourth pillars define a solid quantitative approach to compute capital remedies for potential model deficiencies.\",\"PeriodicalId\":382921,\"journal\":{\"name\":\"ERN: Regulation (European) (Topic)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Regulation (European) (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2264620\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Regulation (European) (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2264620","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

巴塞尔协议III (B3)文件的一个核心组成部分是“反向测试的良好实践”,即关于如何验证和反向测试信贷风险的内部方法模型(IMM)的严格监管指导的摘要。在目前的工作中,我们定义了一个完整的统计框架来回溯测试信贷敞口模型,突出了我们的建议与新的监管要求的特点。该框架包含四个主要支柱:1。风险因素回验,即评价用于描述单个风险因素动态的随机微分方程(SDE)的预测能力。2. 相关性回测,即用于描述跨资产演化的统计估计的评估。3.投资组合回溯测试,即对代表公司敞口的投资组合的完整敞口模型(:= SDEs相关性定价)的评估。4. 资本缓冲的计算,即如果模型框架不足够,公司应该持有的额外资本数量(参见上面三个支柱的结果)。我们在有担保和无担保模型的情况下用具体的例子来展示如何为不同的风险度量执行分布测试。我们对所介绍的所有测试进行了判别能力分析,提供了跨预测范围汇总回测结果的精确方法。最重要的是,第三和第四个支柱定义了一种可靠的定量方法,用于计算潜在模型缺陷的资本补救措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Sound Basel III Compliant Framework for Backtesting Credit Exposure Models
A central component of the Basel III (B3) document is the "Sound practices for backtesting", i.e., a summary of strict regulatory guidances on how to validate and backtest Internal Method Models (IMM) for credit exposure. In the present work, we define a complete statistical framework to backtest credit exposure models, highlighting the features of our proposal vs. the new regulatory requirements. The framework contains four main pillars: 1. The risk factor backtesting, i.e. the assessment of the forecasting ability of the Stochastic Differential Equations (SDE) used to describe the dynamics of the single risk factors. 2. The correlations backtesting, i.e. the assessment of the statistical estimators used to describe the cross-asset evolution. 3. The portfolio backtesting, i.e. the assessment of the complete exposure model (:= SDEs correlations pricing) for portfolios that are representative of the firm’s exposure. 4. The computation of the capital buffer, i.e. the extra amount of capital that the firm should hold if the model framework is not adequate (see outcome of the three pillars above). We show with concrete examples in the cases of collateralized and uncollateralized models how to perform distributional tests w.r.t. different risk metrics. We produce discriminatory power analysis for all the tests introduced, providing exact methods to aggregate backtesting results across forecasting horizons. Most importantly, the third and the fourth pillars define a solid quantitative approach to compute capital remedies for potential model deficiencies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信