{"title":"重油原位燃烧气化制氢","authors":"Ping Song, Yunan Li, Zhen Yin, Q. Yuan","doi":"10.2118/212986-ms","DOIUrl":null,"url":null,"abstract":"\n In-situ combustion (ISC) is a technology used for enhanced oil recovery for heavy oil reservoirs. In two ISC field pilots conducted in 1970s to 1980s in Canada, 10-20% mole fraction of hydrogen (H2) was produced accidentally. This presents a potential opportunity for petroleum industry to contribute to the energy transition by producing hydrogen directly from petroleum reservoirs. However, most ISC experiments have reported no or negligible hydrogen production, and the reason remains unclear. To address this issue, this study focuses on hydrogen generation from bitumen through in-situ combustion gasification (ISCG) at a laboratory scale. CMG was used to simulate the ISCG process in a combustion tube. Kinetics from previous ISC experiments and reactions for hydrogen generation were incorporated in the models. Heavy oil, oxygen, and water were simultaneously injected into the tube at a certain temperature. The ranges of key parameters were varied and analyzed for their impact on hydrogen generation. The study found that maintaining a temperature above 400 °C is essential for hydrogen generation, with higher temperatures yielding higher hydrogen mole fractions. A maximum of 28% hydrogen mole fraction was obtained at a water-oxygen ratio of 0.0018:0.9882 (volume ratio at ambient conditions) and a temperature about 735 °C. Higher oxygen content was found to be favorable for hydrogen generation by achieving a higher temperature, while increasing nitrogen from 0 to 78% led to a decrease in hydrogen mole fraction from 28% to 0.07%. Hydrogen generation is dominated by coke gasification and water-gas shift reactions at low and high temperatures, respectively. This research provides valuable insights into the key parameters affecting hydrogen generation from bitumen at a lab scale. The potential for petroleum industry to contribute to energy transition through large-scale, low-cost hydrogen production from reservoirs is significant.","PeriodicalId":158776,"journal":{"name":"Day 3 Wed, May 24, 2023","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hydrogen Generation from Heavy Oils via In-situ Combustion Gasification\",\"authors\":\"Ping Song, Yunan Li, Zhen Yin, Q. Yuan\",\"doi\":\"10.2118/212986-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In-situ combustion (ISC) is a technology used for enhanced oil recovery for heavy oil reservoirs. In two ISC field pilots conducted in 1970s to 1980s in Canada, 10-20% mole fraction of hydrogen (H2) was produced accidentally. This presents a potential opportunity for petroleum industry to contribute to the energy transition by producing hydrogen directly from petroleum reservoirs. However, most ISC experiments have reported no or negligible hydrogen production, and the reason remains unclear. To address this issue, this study focuses on hydrogen generation from bitumen through in-situ combustion gasification (ISCG) at a laboratory scale. CMG was used to simulate the ISCG process in a combustion tube. Kinetics from previous ISC experiments and reactions for hydrogen generation were incorporated in the models. Heavy oil, oxygen, and water were simultaneously injected into the tube at a certain temperature. The ranges of key parameters were varied and analyzed for their impact on hydrogen generation. The study found that maintaining a temperature above 400 °C is essential for hydrogen generation, with higher temperatures yielding higher hydrogen mole fractions. A maximum of 28% hydrogen mole fraction was obtained at a water-oxygen ratio of 0.0018:0.9882 (volume ratio at ambient conditions) and a temperature about 735 °C. Higher oxygen content was found to be favorable for hydrogen generation by achieving a higher temperature, while increasing nitrogen from 0 to 78% led to a decrease in hydrogen mole fraction from 28% to 0.07%. Hydrogen generation is dominated by coke gasification and water-gas shift reactions at low and high temperatures, respectively. This research provides valuable insights into the key parameters affecting hydrogen generation from bitumen at a lab scale. The potential for petroleum industry to contribute to energy transition through large-scale, low-cost hydrogen production from reservoirs is significant.\",\"PeriodicalId\":158776,\"journal\":{\"name\":\"Day 3 Wed, May 24, 2023\",\"volume\":\"136 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Wed, May 24, 2023\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/212986-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Wed, May 24, 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/212986-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hydrogen Generation from Heavy Oils via In-situ Combustion Gasification
In-situ combustion (ISC) is a technology used for enhanced oil recovery for heavy oil reservoirs. In two ISC field pilots conducted in 1970s to 1980s in Canada, 10-20% mole fraction of hydrogen (H2) was produced accidentally. This presents a potential opportunity for petroleum industry to contribute to the energy transition by producing hydrogen directly from petroleum reservoirs. However, most ISC experiments have reported no or negligible hydrogen production, and the reason remains unclear. To address this issue, this study focuses on hydrogen generation from bitumen through in-situ combustion gasification (ISCG) at a laboratory scale. CMG was used to simulate the ISCG process in a combustion tube. Kinetics from previous ISC experiments and reactions for hydrogen generation were incorporated in the models. Heavy oil, oxygen, and water were simultaneously injected into the tube at a certain temperature. The ranges of key parameters were varied and analyzed for their impact on hydrogen generation. The study found that maintaining a temperature above 400 °C is essential for hydrogen generation, with higher temperatures yielding higher hydrogen mole fractions. A maximum of 28% hydrogen mole fraction was obtained at a water-oxygen ratio of 0.0018:0.9882 (volume ratio at ambient conditions) and a temperature about 735 °C. Higher oxygen content was found to be favorable for hydrogen generation by achieving a higher temperature, while increasing nitrogen from 0 to 78% led to a decrease in hydrogen mole fraction from 28% to 0.07%. Hydrogen generation is dominated by coke gasification and water-gas shift reactions at low and high temperatures, respectively. This research provides valuable insights into the key parameters affecting hydrogen generation from bitumen at a lab scale. The potential for petroleum industry to contribute to energy transition through large-scale, low-cost hydrogen production from reservoirs is significant.