基于最优性的弹道整形制导设计

Qinghong Wang, Ching-Fang Lin, C. D'souza
{"title":"基于最优性的弹道整形制导设计","authors":"Qinghong Wang, Ching-Fang Lin, C. D'souza","doi":"10.1109/AEROCS.1993.721055","DOIUrl":null,"url":null,"abstract":"A design and implementation scheme for the trajectory shaping guidance is discussed in this paper. The guidance law is assumed to be in some feedback form with unknown gains. The gains are then parameterized and obtained by solving a finite-dimensional parameter optimization problem. The advantage of this approach is that the control law would be in a feedback form while maintaining optimality. Furthermore, the design parameters are exactly the guidance parameters for implementing a guidance law.","PeriodicalId":170527,"journal":{"name":"Proceedings. The First IEEE Regional Conference on Aerospace Control Systems,","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimality-Based Trajectory Shaping Guidance Design\",\"authors\":\"Qinghong Wang, Ching-Fang Lin, C. D'souza\",\"doi\":\"10.1109/AEROCS.1993.721055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A design and implementation scheme for the trajectory shaping guidance is discussed in this paper. The guidance law is assumed to be in some feedback form with unknown gains. The gains are then parameterized and obtained by solving a finite-dimensional parameter optimization problem. The advantage of this approach is that the control law would be in a feedback form while maintaining optimality. Furthermore, the design parameters are exactly the guidance parameters for implementing a guidance law.\",\"PeriodicalId\":170527,\"journal\":{\"name\":\"Proceedings. The First IEEE Regional Conference on Aerospace Control Systems,\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. The First IEEE Regional Conference on Aerospace Control Systems,\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AEROCS.1993.721055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. The First IEEE Regional Conference on Aerospace Control Systems,","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AEROCS.1993.721055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了弹道整形制导的设计与实现方案。假设制导律具有未知增益的反馈形式。然后通过求解一个有限维参数优化问题来参数化增益。这种方法的优点是,控制律将在保持最优性的情况下以反馈形式存在。而且,设计参数正是实现制导律的制导参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimality-Based Trajectory Shaping Guidance Design
A design and implementation scheme for the trajectory shaping guidance is discussed in this paper. The guidance law is assumed to be in some feedback form with unknown gains. The gains are then parameterized and obtained by solving a finite-dimensional parameter optimization problem. The advantage of this approach is that the control law would be in a feedback form while maintaining optimality. Furthermore, the design parameters are exactly the guidance parameters for implementing a guidance law.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信