用于挖掘大图的内存表示

Shruti Goyal
{"title":"用于挖掘大图的内存表示","authors":"Shruti Goyal","doi":"10.1109/ICRCICN.2016.7813650","DOIUrl":null,"url":null,"abstract":"Graphs are ubiquitous and are the best data structure for representing linked data because of their flexibility, scalability, and power to deal with complexity. Storing big graphs in graph databases leads to difficult computation and increased time complexity. The best alternative is to use inmemory representations such as compact data structures. They compress the graph sufficiently such that it can be stored in memory and can allow all the possible operations in compressed form itself. In this paper we discuss about five compression techniques: WebGraph, Re-pair, BFS, k2, and dk2. In addition, we compare them based on four parameters: compression ratio, supported functionalities, supported graph types, and dynamic support. The paper is concluded by bringing out the need to have a more advanced, dynamic, and versatile compression technique.","PeriodicalId":254393,"journal":{"name":"2016 Second International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-memory representations for mining big graphs\",\"authors\":\"Shruti Goyal\",\"doi\":\"10.1109/ICRCICN.2016.7813650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphs are ubiquitous and are the best data structure for representing linked data because of their flexibility, scalability, and power to deal with complexity. Storing big graphs in graph databases leads to difficult computation and increased time complexity. The best alternative is to use inmemory representations such as compact data structures. They compress the graph sufficiently such that it can be stored in memory and can allow all the possible operations in compressed form itself. In this paper we discuss about five compression techniques: WebGraph, Re-pair, BFS, k2, and dk2. In addition, we compare them based on four parameters: compression ratio, supported functionalities, supported graph types, and dynamic support. The paper is concluded by bringing out the need to have a more advanced, dynamic, and versatile compression technique.\",\"PeriodicalId\":254393,\"journal\":{\"name\":\"2016 Second International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Second International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRCICN.2016.7813650\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Second International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRCICN.2016.7813650","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图无处不在,由于其灵活性、可伸缩性和处理复杂性的能力,它是表示链接数据的最佳数据结构。在图形数据库中存储大图形会导致计算困难和时间复杂度增加。最好的替代方法是使用内存表示,比如紧凑的数据结构。它们对图形进行了充分的压缩,使其能够存储在内存中,并允许以压缩形式本身进行所有可能的操作。在本文中,我们讨论了五种压缩技术:WebGraph, Re-pair, BFS, k2和dk2。此外,我们还基于四个参数对它们进行了比较:压缩比、支持的功能、支持的图类型和动态支持。本文的结论是提出需要有一个更先进的,动态的,通用的压缩技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In-memory representations for mining big graphs
Graphs are ubiquitous and are the best data structure for representing linked data because of their flexibility, scalability, and power to deal with complexity. Storing big graphs in graph databases leads to difficult computation and increased time complexity. The best alternative is to use inmemory representations such as compact data structures. They compress the graph sufficiently such that it can be stored in memory and can allow all the possible operations in compressed form itself. In this paper we discuss about five compression techniques: WebGraph, Re-pair, BFS, k2, and dk2. In addition, we compare them based on four parameters: compression ratio, supported functionalities, supported graph types, and dynamic support. The paper is concluded by bringing out the need to have a more advanced, dynamic, and versatile compression technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信