{"title":"三维磁共振脑图像的自适应模糊分割","authors":"Alan Wee-Chung Liew, Hong Yan","doi":"10.1109/FUZZ.2003.1206564","DOIUrl":null,"url":null,"abstract":"A fuzzy c-means based adaptive clustering algorithm is proposed for the fuzzy segmentation of 3D MR brain images, which are typically corrupted by noise and intensity non-uniformity (INU) artifact. The proposed algorithm enforces the spatial continuity constraint to account for the spatial correlations between image voxels, resulting in the suppression of noise and classification ambiguity. The INU artifact is compensated for by the introduction of a pseudo-3D bias field, which is modeled as a stack of smooth B-spline surfaces with continuity enforced across slices. The efficacy of the proposed algorithm is demonstrated experimentally using both simulated and real MR images.","PeriodicalId":212172,"journal":{"name":"The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03.","volume":"445 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Adaptive fuzzy segmentation of 3D MR brain images\",\"authors\":\"Alan Wee-Chung Liew, Hong Yan\",\"doi\":\"10.1109/FUZZ.2003.1206564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fuzzy c-means based adaptive clustering algorithm is proposed for the fuzzy segmentation of 3D MR brain images, which are typically corrupted by noise and intensity non-uniformity (INU) artifact. The proposed algorithm enforces the spatial continuity constraint to account for the spatial correlations between image voxels, resulting in the suppression of noise and classification ambiguity. The INU artifact is compensated for by the introduction of a pseudo-3D bias field, which is modeled as a stack of smooth B-spline surfaces with continuity enforced across slices. The efficacy of the proposed algorithm is demonstrated experimentally using both simulated and real MR images.\",\"PeriodicalId\":212172,\"journal\":{\"name\":\"The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03.\",\"volume\":\"445 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZ.2003.1206564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 12th IEEE International Conference on Fuzzy Systems, 2003. FUZZ '03.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ.2003.1206564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A fuzzy c-means based adaptive clustering algorithm is proposed for the fuzzy segmentation of 3D MR brain images, which are typically corrupted by noise and intensity non-uniformity (INU) artifact. The proposed algorithm enforces the spatial continuity constraint to account for the spatial correlations between image voxels, resulting in the suppression of noise and classification ambiguity. The INU artifact is compensated for by the introduction of a pseudo-3D bias field, which is modeled as a stack of smooth B-spline surfaces with continuity enforced across slices. The efficacy of the proposed algorithm is demonstrated experimentally using both simulated and real MR images.