{"title":"基于多关注网络的出租车需求预测","authors":"Haifan Tang, Youkai Wu, Zhaoxia Guo","doi":"10.1109/DOCS55193.2022.9967748","DOIUrl":null,"url":null,"abstract":"Taxi is an important component of the urban transport system in most cities. Accurate taxi demand prediction can effectively reduce the waiting time of passengers and shorten the no-load travel of drivers, which is helpful in alleviating traffic congestion and improving traffic efficiency. Due to the complexity of the traffic system and spatiotemporal dependencies among regions in a road network, traditional prediction methods cannot predict taxi demands of different regions effectively. This paper introduces a Graph Multi-Attention Network (GMAN) to handle the taxi demand prediction problem with better performance, which aims to predict the taxi demands in all regions of a road network in the next time period. The effectiveness of the GMAN is validated based on a large-scale dataset of taxi demands from a real urban road network. Experimental results show that the GMAN outperforms 5 commonly used benchmarking models, including 3 state-of-the-art machine learning models.","PeriodicalId":348545,"journal":{"name":"2022 4th International Conference on Data-driven Optimization of Complex Systems (DOCS)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph Multi-Attention Network-based Taxi Demand Prediction\",\"authors\":\"Haifan Tang, Youkai Wu, Zhaoxia Guo\",\"doi\":\"10.1109/DOCS55193.2022.9967748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Taxi is an important component of the urban transport system in most cities. Accurate taxi demand prediction can effectively reduce the waiting time of passengers and shorten the no-load travel of drivers, which is helpful in alleviating traffic congestion and improving traffic efficiency. Due to the complexity of the traffic system and spatiotemporal dependencies among regions in a road network, traditional prediction methods cannot predict taxi demands of different regions effectively. This paper introduces a Graph Multi-Attention Network (GMAN) to handle the taxi demand prediction problem with better performance, which aims to predict the taxi demands in all regions of a road network in the next time period. The effectiveness of the GMAN is validated based on a large-scale dataset of taxi demands from a real urban road network. Experimental results show that the GMAN outperforms 5 commonly used benchmarking models, including 3 state-of-the-art machine learning models.\",\"PeriodicalId\":348545,\"journal\":{\"name\":\"2022 4th International Conference on Data-driven Optimization of Complex Systems (DOCS)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 4th International Conference on Data-driven Optimization of Complex Systems (DOCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DOCS55193.2022.9967748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 4th International Conference on Data-driven Optimization of Complex Systems (DOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DOCS55193.2022.9967748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Taxi is an important component of the urban transport system in most cities. Accurate taxi demand prediction can effectively reduce the waiting time of passengers and shorten the no-load travel of drivers, which is helpful in alleviating traffic congestion and improving traffic efficiency. Due to the complexity of the traffic system and spatiotemporal dependencies among regions in a road network, traditional prediction methods cannot predict taxi demands of different regions effectively. This paper introduces a Graph Multi-Attention Network (GMAN) to handle the taxi demand prediction problem with better performance, which aims to predict the taxi demands in all regions of a road network in the next time period. The effectiveness of the GMAN is validated based on a large-scale dataset of taxi demands from a real urban road network. Experimental results show that the GMAN outperforms 5 commonly used benchmarking models, including 3 state-of-the-art machine learning models.