基于PSO的改进区间值Campbell-Bennett OCC模型

Mao Yang, Yi Yang, Lian Li, Durong Yin, Zhigang Yang
{"title":"基于PSO的改进区间值Campbell-Bennett OCC模型","authors":"Mao Yang, Yi Yang, Lian Li, Durong Yin, Zhigang Yang","doi":"10.1109/ICSESS47205.2019.9040786","DOIUrl":null,"url":null,"abstract":"This paper proposes a method for parameter optimization of the interval-valued Campbell-Bennett model proposed by Utkin and Chekh using the Particle Swarm optimization (PSO) method. Campbell-Bennett model is a OneClass Classification (OCC) model, whose dual problems can be expressed as a set of simple linear programming problems. Utkin uses the triangular kernel function approximation to replace the Gaussian kernel function in the Campbell-Bennett model, and thus obtains a finite set of simple linear optimization problems for processing interval-valued data. However, the complexity of this method is too high, making it difficult to optimize model parameters. In order to avoid this high complexity, we use a special method to optimize the model parameters with PSO and verify it with numerical experiments.","PeriodicalId":203944,"journal":{"name":"2019 IEEE 10th International Conference on Software Engineering and Service Science (ICSESS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Improved Interval-Valued Campbell-Bennett OCC Model Based on PSO\",\"authors\":\"Mao Yang, Yi Yang, Lian Li, Durong Yin, Zhigang Yang\",\"doi\":\"10.1109/ICSESS47205.2019.9040786\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a method for parameter optimization of the interval-valued Campbell-Bennett model proposed by Utkin and Chekh using the Particle Swarm optimization (PSO) method. Campbell-Bennett model is a OneClass Classification (OCC) model, whose dual problems can be expressed as a set of simple linear programming problems. Utkin uses the triangular kernel function approximation to replace the Gaussian kernel function in the Campbell-Bennett model, and thus obtains a finite set of simple linear optimization problems for processing interval-valued data. However, the complexity of this method is too high, making it difficult to optimize model parameters. In order to avoid this high complexity, we use a special method to optimize the model parameters with PSO and verify it with numerical experiments.\",\"PeriodicalId\":203944,\"journal\":{\"name\":\"2019 IEEE 10th International Conference on Software Engineering and Service Science (ICSESS)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 10th International Conference on Software Engineering and Service Science (ICSESS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSESS47205.2019.9040786\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 10th International Conference on Software Engineering and Service Science (ICSESS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSESS47205.2019.9040786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对Utkin和Chekh提出的区间值Campbell-Bennett模型,提出了一种基于粒子群算法(PSO)的参数优化方法。Campbell-Bennett模型是一种单类分类(OCC)模型,其对偶问题可以表示为一组简单的线性规划问题。Utkin使用三角核函数近似代替Campbell-Bennett模型中的高斯核函数,从而得到一组有限的简单线性优化问题,用于处理区间值数据。然而,该方法的复杂性太高,使得模型参数的优化变得困难。为了避免这种高复杂性,我们采用了一种特殊的方法,用粒子群算法对模型参数进行优化,并进行了数值实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Improved Interval-Valued Campbell-Bennett OCC Model Based on PSO
This paper proposes a method for parameter optimization of the interval-valued Campbell-Bennett model proposed by Utkin and Chekh using the Particle Swarm optimization (PSO) method. Campbell-Bennett model is a OneClass Classification (OCC) model, whose dual problems can be expressed as a set of simple linear programming problems. Utkin uses the triangular kernel function approximation to replace the Gaussian kernel function in the Campbell-Bennett model, and thus obtains a finite set of simple linear optimization problems for processing interval-valued data. However, the complexity of this method is too high, making it difficult to optimize model parameters. In order to avoid this high complexity, we use a special method to optimize the model parameters with PSO and verify it with numerical experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信