使用多个信息源自动检测元音发音错误

Joost van Doremalen, C. Cucchiarini, H. Strik
{"title":"使用多个信息源自动检测元音发音错误","authors":"Joost van Doremalen, C. Cucchiarini, H. Strik","doi":"10.1109/asru.2009.5373335","DOIUrl":null,"url":null,"abstract":"Frequent pronunciation errors made by L2 learners of Dutch often concern vowel substitutions. To detect such pronunciation errors, ASR-based confidence measures (CMs) are generally used. In the current paper we compare and combine confidence measures with MFCCs and phonetic features. The results show that the best results are obtained by using MFCCs, then CMs, and finally phonetic features, and that substantial improvements can be obtained by combining different features.","PeriodicalId":292194,"journal":{"name":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","volume":"47 23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Automatic detection of vowel pronunciation errors using multiple information sources\",\"authors\":\"Joost van Doremalen, C. Cucchiarini, H. Strik\",\"doi\":\"10.1109/asru.2009.5373335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Frequent pronunciation errors made by L2 learners of Dutch often concern vowel substitutions. To detect such pronunciation errors, ASR-based confidence measures (CMs) are generally used. In the current paper we compare and combine confidence measures with MFCCs and phonetic features. The results show that the best results are obtained by using MFCCs, then CMs, and finally phonetic features, and that substantial improvements can be obtained by combining different features.\",\"PeriodicalId\":292194,\"journal\":{\"name\":\"2009 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"volume\":\"47 23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Workshop on Automatic Speech Recognition & Understanding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/asru.2009.5373335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Workshop on Automatic Speech Recognition & Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/asru.2009.5373335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

第二语言荷兰语学习者经常犯的发音错误通常与元音替换有关。为了检测此类发音错误,通常使用基于asr的置信度测量(CMs)。本文将置信度度量与语音特征和语音特征进行比较和结合。结果表明,使用mfccc、CMs、语音特征的效果最好,不同特征的组合可以获得较大的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic detection of vowel pronunciation errors using multiple information sources
Frequent pronunciation errors made by L2 learners of Dutch often concern vowel substitutions. To detect such pronunciation errors, ASR-based confidence measures (CMs) are generally used. In the current paper we compare and combine confidence measures with MFCCs and phonetic features. The results show that the best results are obtained by using MFCCs, then CMs, and finally phonetic features, and that substantial improvements can be obtained by combining different features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信