基于机器学习的大容量V-NAND闪存优化技术

Jisuk Kim, Earl Kim, Daehyeon Lee, Taeheon Lee, Daesik Ham, Miju Yang, Wanha Hwang, Jaeyoung Kim, Sangyong Yoon, Youngwook Jeong, Eun-Kyoung Kim, Ki-Whan Song, J. Song, Myungsuk Kim, W. Choi
{"title":"基于机器学习的大容量V-NAND闪存优化技术","authors":"Jisuk Kim, Earl Kim, Daehyeon Lee, Taeheon Lee, Daesik Ham, Miju Yang, Wanha Hwang, Jaeyoung Kim, Sangyong Yoon, Youngwook Jeong, Eun-Kyoung Kim, Ki-Whan Song, J. Song, Myungsuk Kim, W. Choi","doi":"10.31399/asm.cp.istfa2021p0020","DOIUrl":null,"url":null,"abstract":"\n In the NAND flash manufacturing process, thousands of internal electronic fuses (eFuse) should be tuned in order to optimize performance and validity. In this paper, we propose a machine learning-based optimization technique that can automatically tune the individual eFuse value based on a deep learning and genetic algorithm. Using state-of-the-art triple-level cell (TLC) V-NAND flash wafers, we trained our model and validated its effectiveness. The experimental results show that our technique can automatically optimize NAND flash memory, thus reducing total turnaround time (TAT) by 70 % compared with the manual-based process.","PeriodicalId":188323,"journal":{"name":"ISTFA 2021: Conference Proceedings from the 47th International Symposium for Testing and Failure Analysis","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning-Based Optimization Technique for High-Capacity V-NAND Flash Memory\",\"authors\":\"Jisuk Kim, Earl Kim, Daehyeon Lee, Taeheon Lee, Daesik Ham, Miju Yang, Wanha Hwang, Jaeyoung Kim, Sangyong Yoon, Youngwook Jeong, Eun-Kyoung Kim, Ki-Whan Song, J. Song, Myungsuk Kim, W. Choi\",\"doi\":\"10.31399/asm.cp.istfa2021p0020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In the NAND flash manufacturing process, thousands of internal electronic fuses (eFuse) should be tuned in order to optimize performance and validity. In this paper, we propose a machine learning-based optimization technique that can automatically tune the individual eFuse value based on a deep learning and genetic algorithm. Using state-of-the-art triple-level cell (TLC) V-NAND flash wafers, we trained our model and validated its effectiveness. The experimental results show that our technique can automatically optimize NAND flash memory, thus reducing total turnaround time (TAT) by 70 % compared with the manual-based process.\",\"PeriodicalId\":188323,\"journal\":{\"name\":\"ISTFA 2021: Conference Proceedings from the 47th International Symposium for Testing and Failure Analysis\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISTFA 2021: Conference Proceedings from the 47th International Symposium for Testing and Failure Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31399/asm.cp.istfa2021p0020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISTFA 2021: Conference Proceedings from the 47th International Symposium for Testing and Failure Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31399/asm.cp.istfa2021p0020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在NAND闪存制造过程中,为了优化性能和有效性,需要对数千个内部电子保险丝(eFuse)进行调谐。在本文中,我们提出了一种基于机器学习的优化技术,该技术可以基于深度学习和遗传算法自动调整单个eFuse值。使用最先进的三层单元(TLC) V-NAND闪存晶圆,我们训练了我们的模型并验证了其有效性。实验结果表明,我们的技术可以自动优化NAND闪存,从而使总周转时间(TAT)比基于人工的过程减少70%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning-Based Optimization Technique for High-Capacity V-NAND Flash Memory
In the NAND flash manufacturing process, thousands of internal electronic fuses (eFuse) should be tuned in order to optimize performance and validity. In this paper, we propose a machine learning-based optimization technique that can automatically tune the individual eFuse value based on a deep learning and genetic algorithm. Using state-of-the-art triple-level cell (TLC) V-NAND flash wafers, we trained our model and validated its effectiveness. The experimental results show that our technique can automatically optimize NAND flash memory, thus reducing total turnaround time (TAT) by 70 % compared with the manual-based process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信