管理太阳能热电厂和标准与纳米流体太阳能集热器性能比较的电子设备

P. Visconti, P. Costantini, G. Colangelo, G. Cavalera
{"title":"管理太阳能热电厂和标准与纳米流体太阳能集热器性能比较的电子设备","authors":"P. Visconti, P. Costantini, G. Colangelo, G. Cavalera","doi":"10.1109/NANOFIM.2015.8425338","DOIUrl":null,"url":null,"abstract":"This paper describes a programmable electronic system for controlling the environmental parameters and managing the electrical functions of a civil/industrial thermo-solar plant. The device acquires data from temperature and light sensors, processes these information and commands external equipments (pumps, electric valves and power supplies) with dedicated relay outputs for the optimization of plant performances in order to maximize efficiency and energy saving. Recently several researches, in the field of solar thermal energy production, have demonstrated that nanofluid-based solar collectors present higher conversion efficiency. In this context, the designed control unit can be used to detect physical parameters in order to compare the performances of nanofluid-based solar collector with those of standard one. The electronic experimental setup is capable to monitor, at the same time, the two different types of solar collector in similar environmental conditions and to show on touch screen display the detected performances.","PeriodicalId":413629,"journal":{"name":"2015 1st Workshop on Nanotechnology in Instrumentation and Measurement (NANOFIM)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electronic equipment for managing of thermo-solar plant and for performance comparison between standard and nanofluid-based solar collectors\",\"authors\":\"P. Visconti, P. Costantini, G. Colangelo, G. Cavalera\",\"doi\":\"10.1109/NANOFIM.2015.8425338\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a programmable electronic system for controlling the environmental parameters and managing the electrical functions of a civil/industrial thermo-solar plant. The device acquires data from temperature and light sensors, processes these information and commands external equipments (pumps, electric valves and power supplies) with dedicated relay outputs for the optimization of plant performances in order to maximize efficiency and energy saving. Recently several researches, in the field of solar thermal energy production, have demonstrated that nanofluid-based solar collectors present higher conversion efficiency. In this context, the designed control unit can be used to detect physical parameters in order to compare the performances of nanofluid-based solar collector with those of standard one. The electronic experimental setup is capable to monitor, at the same time, the two different types of solar collector in similar environmental conditions and to show on touch screen display the detected performances.\",\"PeriodicalId\":413629,\"journal\":{\"name\":\"2015 1st Workshop on Nanotechnology in Instrumentation and Measurement (NANOFIM)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 1st Workshop on Nanotechnology in Instrumentation and Measurement (NANOFIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANOFIM.2015.8425338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 1st Workshop on Nanotechnology in Instrumentation and Measurement (NANOFIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANOFIM.2015.8425338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种用于控制环境参数和管理民用/工业太阳能热电厂电气功能的可编程电子系统。该设备从温度和光传感器获取数据,处理这些信息,并通过专用继电器输出命令外部设备(泵,电动阀和电源),以优化工厂性能,从而最大限度地提高效率和节能。近年来,在太阳能热能生产领域的一些研究表明,基于纳米流体的太阳能集热器具有更高的转换效率。在这种情况下,所设计的控制单元可以用于检测物理参数,以便将纳米流体太阳能集热器的性能与标准集热器的性能进行比较。电子实验装置能够同时对两种不同类型的太阳能集热器在相似的环境条件下进行监测,并在触摸屏上显示检测到的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Electronic equipment for managing of thermo-solar plant and for performance comparison between standard and nanofluid-based solar collectors
This paper describes a programmable electronic system for controlling the environmental parameters and managing the electrical functions of a civil/industrial thermo-solar plant. The device acquires data from temperature and light sensors, processes these information and commands external equipments (pumps, electric valves and power supplies) with dedicated relay outputs for the optimization of plant performances in order to maximize efficiency and energy saving. Recently several researches, in the field of solar thermal energy production, have demonstrated that nanofluid-based solar collectors present higher conversion efficiency. In this context, the designed control unit can be used to detect physical parameters in order to compare the performances of nanofluid-based solar collector with those of standard one. The electronic experimental setup is capable to monitor, at the same time, the two different types of solar collector in similar environmental conditions and to show on touch screen display the detected performances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信