{"title":"通过自组织增强监督学习算法","authors":"R. M. Holdaway","doi":"10.1109/IJCNN.1989.118293","DOIUrl":null,"url":null,"abstract":"A neural network processing scheme is proposed which utilizes a self-organizing Kohonen feature map as the front end to a feedforward classifier network. The results of a series of benchmarking studies based upon artificial statistical pattern recognition tasks indicate that the proposed architecture performs significantly better than do conventional feedforward classifier networks when the decision regions are disjoint. This is attributed to the fact that the self-organization process allows internal units in the succeeding classifier network to be sensitive to a specific set of features in the input space at the outset of training.<<ETX>>","PeriodicalId":199877,"journal":{"name":"International 1989 Joint Conference on Neural Networks","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Enhancing supervised learning algorithms via self-organization\",\"authors\":\"R. M. Holdaway\",\"doi\":\"10.1109/IJCNN.1989.118293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A neural network processing scheme is proposed which utilizes a self-organizing Kohonen feature map as the front end to a feedforward classifier network. The results of a series of benchmarking studies based upon artificial statistical pattern recognition tasks indicate that the proposed architecture performs significantly better than do conventional feedforward classifier networks when the decision regions are disjoint. This is attributed to the fact that the self-organization process allows internal units in the succeeding classifier network to be sensitive to a specific set of features in the input space at the outset of training.<<ETX>>\",\"PeriodicalId\":199877,\"journal\":{\"name\":\"International 1989 Joint Conference on Neural Networks\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International 1989 Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.1989.118293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International 1989 Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1989.118293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhancing supervised learning algorithms via self-organization
A neural network processing scheme is proposed which utilizes a self-organizing Kohonen feature map as the front end to a feedforward classifier network. The results of a series of benchmarking studies based upon artificial statistical pattern recognition tasks indicate that the proposed architecture performs significantly better than do conventional feedforward classifier networks when the decision regions are disjoint. This is attributed to the fact that the self-organization process allows internal units in the succeeding classifier network to be sensitive to a specific set of features in the input space at the outset of training.<>