通过自组织增强监督学习算法

R. M. Holdaway
{"title":"通过自组织增强监督学习算法","authors":"R. M. Holdaway","doi":"10.1109/IJCNN.1989.118293","DOIUrl":null,"url":null,"abstract":"A neural network processing scheme is proposed which utilizes a self-organizing Kohonen feature map as the front end to a feedforward classifier network. The results of a series of benchmarking studies based upon artificial statistical pattern recognition tasks indicate that the proposed architecture performs significantly better than do conventional feedforward classifier networks when the decision regions are disjoint. This is attributed to the fact that the self-organization process allows internal units in the succeeding classifier network to be sensitive to a specific set of features in the input space at the outset of training.<<ETX>>","PeriodicalId":199877,"journal":{"name":"International 1989 Joint Conference on Neural Networks","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Enhancing supervised learning algorithms via self-organization\",\"authors\":\"R. M. Holdaway\",\"doi\":\"10.1109/IJCNN.1989.118293\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A neural network processing scheme is proposed which utilizes a self-organizing Kohonen feature map as the front end to a feedforward classifier network. The results of a series of benchmarking studies based upon artificial statistical pattern recognition tasks indicate that the proposed architecture performs significantly better than do conventional feedforward classifier networks when the decision regions are disjoint. This is attributed to the fact that the self-organization process allows internal units in the succeeding classifier network to be sensitive to a specific set of features in the input space at the outset of training.<<ETX>>\",\"PeriodicalId\":199877,\"journal\":{\"name\":\"International 1989 Joint Conference on Neural Networks\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International 1989 Joint Conference on Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.1989.118293\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International 1989 Joint Conference on Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1989.118293","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

提出了一种利用自组织Kohonen特征映射作为前馈分类器网络前端的神经网络处理方案。基于人工统计模式识别任务的一系列基准研究结果表明,当决策区域不相交时,所提出的体系结构明显优于传统的前馈分类器网络。这是由于自组织过程允许后续分类器网络中的内部单元在训练开始时对输入空间中的一组特定特征敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing supervised learning algorithms via self-organization
A neural network processing scheme is proposed which utilizes a self-organizing Kohonen feature map as the front end to a feedforward classifier network. The results of a series of benchmarking studies based upon artificial statistical pattern recognition tasks indicate that the proposed architecture performs significantly better than do conventional feedforward classifier networks when the decision regions are disjoint. This is attributed to the fact that the self-organization process allows internal units in the succeeding classifier network to be sensitive to a specific set of features in the input space at the outset of training.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信