基于稀疏自编码器的旋转机械状态智能监测

N. Verma, V. Gupta, Mayank Sharma, R. K. Sevakula
{"title":"基于稀疏自编码器的旋转机械状态智能监测","authors":"N. Verma, V. Gupta, Mayank Sharma, R. K. Sevakula","doi":"10.1109/ICPHM.2013.6621447","DOIUrl":null,"url":null,"abstract":"Support Vector Machine (SVM) has been very popular for use in machine fault diagnosis as classifier. In most of the complex machine learning problems, the main challenge lies in finding good features. Sparse autoencoders have the ability to learn good features from the input data in an unsuperivised fashion. Sparse auto-encoders and other deep architectures are already showing very good results in text classification, speaker and speech recognition and face recognition as well. In this paper, we compare the performance of sparse autoencoders with soft max regression, fast classifier based on Mahalanobis distance and SVM in fault diagnosis of air compressors.","PeriodicalId":178906,"journal":{"name":"2013 IEEE Conference on Prognostics and Health Management (PHM)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"84","resultStr":"{\"title\":\"Intelligent condition based monitoring of rotating machines using sparse auto-encoders\",\"authors\":\"N. Verma, V. Gupta, Mayank Sharma, R. K. Sevakula\",\"doi\":\"10.1109/ICPHM.2013.6621447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Support Vector Machine (SVM) has been very popular for use in machine fault diagnosis as classifier. In most of the complex machine learning problems, the main challenge lies in finding good features. Sparse autoencoders have the ability to learn good features from the input data in an unsuperivised fashion. Sparse auto-encoders and other deep architectures are already showing very good results in text classification, speaker and speech recognition and face recognition as well. In this paper, we compare the performance of sparse autoencoders with soft max regression, fast classifier based on Mahalanobis distance and SVM in fault diagnosis of air compressors.\",\"PeriodicalId\":178906,\"journal\":{\"name\":\"2013 IEEE Conference on Prognostics and Health Management (PHM)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"84\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Conference on Prognostics and Health Management (PHM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPHM.2013.6621447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Conference on Prognostics and Health Management (PHM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPHM.2013.6621447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 84

摘要

支持向量机作为分类器在机械故障诊断中得到了广泛的应用。在大多数复杂的机器学习问题中,主要的挑战在于找到好的特征。稀疏自编码器能够以无监督的方式从输入数据中学习良好的特征。稀疏自编码器和其他深度架构已经在文本分类、说话人和语音识别以及人脸识别方面显示出非常好的结果。本文比较了软最大回归、基于马氏距离的快速分类器和支持向量机的稀疏自编码器在空压机故障诊断中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent condition based monitoring of rotating machines using sparse auto-encoders
Support Vector Machine (SVM) has been very popular for use in machine fault diagnosis as classifier. In most of the complex machine learning problems, the main challenge lies in finding good features. Sparse autoencoders have the ability to learn good features from the input data in an unsuperivised fashion. Sparse auto-encoders and other deep architectures are already showing very good results in text classification, speaker and speech recognition and face recognition as well. In this paper, we compare the performance of sparse autoencoders with soft max regression, fast classifier based on Mahalanobis distance and SVM in fault diagnosis of air compressors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信