如何在深度扬声器嵌入中聚合声学Delta特征

Youngsam Kim, Jong-hyuk Roh, Kwantae Cho, Sangrae Cho
{"title":"如何在深度扬声器嵌入中聚合声学Delta特征","authors":"Youngsam Kim, Jong-hyuk Roh, Kwantae Cho, Sangrae Cho","doi":"10.1109/ICTC49870.2020.9289205","DOIUrl":null,"url":null,"abstract":"Speaker verification based on deep speaker embeddings (DSE) network outperformed traditional i- vectors systems. Afterward, to improve the performance, various researches have been conducting and data augmentation methods are one of them. In this paper, we focus on acoustic delta features augmentation and their aggregation methods for DSE networks, X-vectors and MobileVoxNet. For CNN-based MobileVoxNet, we re-design the architecture to aggregate delta features in deeper layer with squeeze and excitation (SE) module. Experimental results show that the proposed methods achieve performance improvement compared to not using delta features on the VoxCeleb1 test dataset. We also compare the number of computations and parameters of models to analyze efficiency of the proposed methods.","PeriodicalId":282243,"journal":{"name":"2020 International Conference on Information and Communication Technology Convergence (ICTC)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How to Aggregate Acoustic Delta Features for Deep Speaker Embeddings\",\"authors\":\"Youngsam Kim, Jong-hyuk Roh, Kwantae Cho, Sangrae Cho\",\"doi\":\"10.1109/ICTC49870.2020.9289205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Speaker verification based on deep speaker embeddings (DSE) network outperformed traditional i- vectors systems. Afterward, to improve the performance, various researches have been conducting and data augmentation methods are one of them. In this paper, we focus on acoustic delta features augmentation and their aggregation methods for DSE networks, X-vectors and MobileVoxNet. For CNN-based MobileVoxNet, we re-design the architecture to aggregate delta features in deeper layer with squeeze and excitation (SE) module. Experimental results show that the proposed methods achieve performance improvement compared to not using delta features on the VoxCeleb1 test dataset. We also compare the number of computations and parameters of models to analyze efficiency of the proposed methods.\",\"PeriodicalId\":282243,\"journal\":{\"name\":\"2020 International Conference on Information and Communication Technology Convergence (ICTC)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 International Conference on Information and Communication Technology Convergence (ICTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTC49870.2020.9289205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Information and Communication Technology Convergence (ICTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTC49870.2020.9289205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于深度说话人嵌入(DSE)网络的说话人验证优于传统的i向量系统。之后,为了提高性能,进行了各种研究,数据增强方法是其中之一。本文主要研究了基于DSE网络、x -vector网络和MobileVoxNet的声学δ特征增强及其聚合方法。对于基于cnn的MobileVoxNet,我们重新设计了架构,利用SE (squeeze and excitation)模块对更深层的delta特征进行聚合。实验结果表明,与未在VoxCeleb1测试数据集上使用delta特征相比,所提方法的性能得到了提高。我们还比较了模型的计算次数和参数,以分析所提出方法的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How to Aggregate Acoustic Delta Features for Deep Speaker Embeddings
Speaker verification based on deep speaker embeddings (DSE) network outperformed traditional i- vectors systems. Afterward, to improve the performance, various researches have been conducting and data augmentation methods are one of them. In this paper, we focus on acoustic delta features augmentation and their aggregation methods for DSE networks, X-vectors and MobileVoxNet. For CNN-based MobileVoxNet, we re-design the architecture to aggregate delta features in deeper layer with squeeze and excitation (SE) module. Experimental results show that the proposed methods achieve performance improvement compared to not using delta features on the VoxCeleb1 test dataset. We also compare the number of computations and parameters of models to analyze efficiency of the proposed methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信