{"title":"激光光学的紫外疲劳:激光引起的污染","authors":"B. Arnold, Cyrus Rashvand, L. Willis, M. Dabney","doi":"10.1117/12.2638404","DOIUrl":null,"url":null,"abstract":"Laser-induced contamination (LIC) can be a major concern of using UV laser systems. Surface contamination occurs via interactions between the UV laser and particulates, water vapor condensate, organics, and airborne molecular contaminates (AMC) from the environment or outgassing from system materials. A brief review of contamination of optics will lead into present results from long-term 355 nm quasi-CW laser transmission experiments at Edmund Optics. Time lapse microscopy was used to monitor nucleation and growth of surface contaminants. Laser burn boxes were constructed for use as a controlled UV LIC testbed; experimental results are presented on transmission losses for various material preparation methods.","PeriodicalId":202227,"journal":{"name":"Laser Damage","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"UV fatigue of laser optics: laser-induced contamination\",\"authors\":\"B. Arnold, Cyrus Rashvand, L. Willis, M. Dabney\",\"doi\":\"10.1117/12.2638404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Laser-induced contamination (LIC) can be a major concern of using UV laser systems. Surface contamination occurs via interactions between the UV laser and particulates, water vapor condensate, organics, and airborne molecular contaminates (AMC) from the environment or outgassing from system materials. A brief review of contamination of optics will lead into present results from long-term 355 nm quasi-CW laser transmission experiments at Edmund Optics. Time lapse microscopy was used to monitor nucleation and growth of surface contaminants. Laser burn boxes were constructed for use as a controlled UV LIC testbed; experimental results are presented on transmission losses for various material preparation methods.\",\"PeriodicalId\":202227,\"journal\":{\"name\":\"Laser Damage\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Laser Damage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2638404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laser Damage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2638404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
UV fatigue of laser optics: laser-induced contamination
Laser-induced contamination (LIC) can be a major concern of using UV laser systems. Surface contamination occurs via interactions between the UV laser and particulates, water vapor condensate, organics, and airborne molecular contaminates (AMC) from the environment or outgassing from system materials. A brief review of contamination of optics will lead into present results from long-term 355 nm quasi-CW laser transmission experiments at Edmund Optics. Time lapse microscopy was used to monitor nucleation and growth of surface contaminants. Laser burn boxes were constructed for use as a controlled UV LIC testbed; experimental results are presented on transmission losses for various material preparation methods.