{"title":"具有空间查找表的可分离图像变形","authors":"G. Wolberg, T. Boult","doi":"10.1145/74333.74371","DOIUrl":null,"url":null,"abstract":"Image warping refers to the 2-D resampling of a source image onto a target image. In the general case, this requires costly 2-D filtering operations. Simplifications are possible when the warp can be expressed as a cascade of orthogonal 1-D transformations. In these cases, separable transformations have been introduced to realize large performance gains. The central ideas in this area were formulated in the 2-pass algorithm by Catmull and Smith. Although that method applies over an important class of transformations, there are intrinsic problems which limit its usefulness.The goal of this work is to extend the 2-pass approach to handle arbitrary spatial mapping functions. We address the difficulties intrinsic to 2-pass scanline algorithms: bottlenecking, foldovers, and the lack of closed-form inverse solutions. These problems are shown to be resolved in a general, efficient, separable technique, with graceful degradation for transformations of increasing complexity.","PeriodicalId":422743,"journal":{"name":"Proceedings of the 16th annual conference on Computer graphics and interactive techniques","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":"{\"title\":\"Separable image warping with spatial lookup tables\",\"authors\":\"G. Wolberg, T. Boult\",\"doi\":\"10.1145/74333.74371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image warping refers to the 2-D resampling of a source image onto a target image. In the general case, this requires costly 2-D filtering operations. Simplifications are possible when the warp can be expressed as a cascade of orthogonal 1-D transformations. In these cases, separable transformations have been introduced to realize large performance gains. The central ideas in this area were formulated in the 2-pass algorithm by Catmull and Smith. Although that method applies over an important class of transformations, there are intrinsic problems which limit its usefulness.The goal of this work is to extend the 2-pass approach to handle arbitrary spatial mapping functions. We address the difficulties intrinsic to 2-pass scanline algorithms: bottlenecking, foldovers, and the lack of closed-form inverse solutions. These problems are shown to be resolved in a general, efficient, separable technique, with graceful degradation for transformations of increasing complexity.\",\"PeriodicalId\":422743,\"journal\":{\"name\":\"Proceedings of the 16th annual conference on Computer graphics and interactive techniques\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 16th annual conference on Computer graphics and interactive techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/74333.74371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th annual conference on Computer graphics and interactive techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/74333.74371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Separable image warping with spatial lookup tables
Image warping refers to the 2-D resampling of a source image onto a target image. In the general case, this requires costly 2-D filtering operations. Simplifications are possible when the warp can be expressed as a cascade of orthogonal 1-D transformations. In these cases, separable transformations have been introduced to realize large performance gains. The central ideas in this area were formulated in the 2-pass algorithm by Catmull and Smith. Although that method applies over an important class of transformations, there are intrinsic problems which limit its usefulness.The goal of this work is to extend the 2-pass approach to handle arbitrary spatial mapping functions. We address the difficulties intrinsic to 2-pass scanline algorithms: bottlenecking, foldovers, and the lack of closed-form inverse solutions. These problems are shown to be resolved in a general, efficient, separable technique, with graceful degradation for transformations of increasing complexity.