自回归参数的置信分布

Rolf Larsson
{"title":"自回归参数的置信分布","authors":"Rolf Larsson","doi":"10.1080/00031305.2023.2226184","DOIUrl":null,"url":null,"abstract":"The notion of confidence distributions is applied to inference about the parameter in a simple autoregressive model, allowing the parameter to take the value one. This makes it possible to compare to asymptotic approximations in both the stationary and the non stationary cases at the same time. The main point, however, is to compare to a Bayesian analysis of the same problem. A non informative prior for a parameter, in the sense of Jeffreys, is given as the ratio of the confidence density and the likelihood. In this way, the similarity between the confidence and non-informative Bayesian frameworks is exploited. It is shown that, in the stationary case, asymptotically the so induced prior is flat. However, if a unit parameter is allowed, the induced prior has to have a spike at one of some size. Simulation studies and two empirical examples illustrate the ideas.","PeriodicalId":342642,"journal":{"name":"The American Statistician","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Confidence Distributions for the Autoregressive Parameter\",\"authors\":\"Rolf Larsson\",\"doi\":\"10.1080/00031305.2023.2226184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The notion of confidence distributions is applied to inference about the parameter in a simple autoregressive model, allowing the parameter to take the value one. This makes it possible to compare to asymptotic approximations in both the stationary and the non stationary cases at the same time. The main point, however, is to compare to a Bayesian analysis of the same problem. A non informative prior for a parameter, in the sense of Jeffreys, is given as the ratio of the confidence density and the likelihood. In this way, the similarity between the confidence and non-informative Bayesian frameworks is exploited. It is shown that, in the stationary case, asymptotically the so induced prior is flat. However, if a unit parameter is allowed, the induced prior has to have a spike at one of some size. Simulation studies and two empirical examples illustrate the ideas.\",\"PeriodicalId\":342642,\"journal\":{\"name\":\"The American Statistician\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The American Statistician\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00031305.2023.2226184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The American Statistician","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00031305.2023.2226184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

将置信分布的概念应用于简单自回归模型中参数的推断,使参数取值为1。这使得在平稳和非平稳情况下同时比较渐近逼近成为可能。然而,主要的一点是将其与贝叶斯分析的相同问题进行比较。在杰弗里斯的意义上,参数的非信息先验是置信密度与似然之比。通过这种方式,利用了置信度和非信息贝叶斯框架之间的相似性。结果表明,在平稳情况下,渐近诱导先验是平坦的。但是,如果允许使用单位参数,则诱导先验必须具有某种大小的尖峰。仿真研究和两个实例说明了这些思想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Confidence Distributions for the Autoregressive Parameter
The notion of confidence distributions is applied to inference about the parameter in a simple autoregressive model, allowing the parameter to take the value one. This makes it possible to compare to asymptotic approximations in both the stationary and the non stationary cases at the same time. The main point, however, is to compare to a Bayesian analysis of the same problem. A non informative prior for a parameter, in the sense of Jeffreys, is given as the ratio of the confidence density and the likelihood. In this way, the similarity between the confidence and non-informative Bayesian frameworks is exploited. It is shown that, in the stationary case, asymptotically the so induced prior is flat. However, if a unit parameter is allowed, the induced prior has to have a spike at one of some size. Simulation studies and two empirical examples illustrate the ideas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信