传统矩阵变换器的鲁棒电压换相

Lixiang Wei, T. Lipo, Ho Chan
{"title":"传统矩阵变换器的鲁棒电压换相","authors":"Lixiang Wei, T. Lipo, Ho Chan","doi":"10.1109/PESC.2003.1218144","DOIUrl":null,"url":null,"abstract":"The three-phase AC-AC converter termed the matrix converter can provide high quality input/output waveforms and adjustable input power factor without any large energy storage component. However, it has not yet found much acceptance in industry. The main reason is that it requires a complicated commutation scheme to prevent input side short circuits and output side open circuits. This paper develops a new voltage commutation scheme for the conventional matrix converter. One advantage of this scheme is that it provides robust voltage commutations for the converter without sacrificing the quality of the line side current waveforms. The second advantage is that it needs the least information from the system than any algorithm yet reported. It only detects the line side synchronization angle which can have detection errors within /spl plusmn//spl pi//6 radians under unity input power factor to provide accurate commutation. The last advantage of this scheme is that it can provide easier shut down sequences for the system. Theoretical analysis, simulation and experimental results are provided to verify its effectiveness in the paper.","PeriodicalId":236199,"journal":{"name":"IEEE 34th Annual Conference on Power Electronics Specialist, 2003. PESC '03.","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Robust voltage commutation of the conventional matrix converter\",\"authors\":\"Lixiang Wei, T. Lipo, Ho Chan\",\"doi\":\"10.1109/PESC.2003.1218144\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The three-phase AC-AC converter termed the matrix converter can provide high quality input/output waveforms and adjustable input power factor without any large energy storage component. However, it has not yet found much acceptance in industry. The main reason is that it requires a complicated commutation scheme to prevent input side short circuits and output side open circuits. This paper develops a new voltage commutation scheme for the conventional matrix converter. One advantage of this scheme is that it provides robust voltage commutations for the converter without sacrificing the quality of the line side current waveforms. The second advantage is that it needs the least information from the system than any algorithm yet reported. It only detects the line side synchronization angle which can have detection errors within /spl plusmn//spl pi//6 radians under unity input power factor to provide accurate commutation. The last advantage of this scheme is that it can provide easier shut down sequences for the system. Theoretical analysis, simulation and experimental results are provided to verify its effectiveness in the paper.\",\"PeriodicalId\":236199,\"journal\":{\"name\":\"IEEE 34th Annual Conference on Power Electronics Specialist, 2003. PESC '03.\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE 34th Annual Conference on Power Electronics Specialist, 2003. PESC '03.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PESC.2003.1218144\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE 34th Annual Conference on Power Electronics Specialist, 2003. PESC '03.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESC.2003.1218144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

称为矩阵变换器的三相交流-交流变换器可以提供高质量的输入/输出波形和可调的输入功率因数,而无需任何大的储能组件。然而,它尚未在工业界得到广泛接受。主要原因是它需要一个复杂的换相方案,以防止输入侧短路和输出侧开路。针对传统的矩阵变换器,提出了一种新的电压换相方案。该方案的一个优点是,在不牺牲线侧电流波形质量的情况下,为变换器提供了鲁棒的电压换流。第二个优点是,它需要的系统信息比目前报道的任何算法都要少。它只检测线侧同步角,在单位输入功率因数下,检测误差在/spl plusmn//spl pi//6弧度以内,以提供精确的换相。该方案的最后一个优点是它可以为系统提供更容易的关闭序列。理论分析、仿真和实验结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust voltage commutation of the conventional matrix converter
The three-phase AC-AC converter termed the matrix converter can provide high quality input/output waveforms and adjustable input power factor without any large energy storage component. However, it has not yet found much acceptance in industry. The main reason is that it requires a complicated commutation scheme to prevent input side short circuits and output side open circuits. This paper develops a new voltage commutation scheme for the conventional matrix converter. One advantage of this scheme is that it provides robust voltage commutations for the converter without sacrificing the quality of the line side current waveforms. The second advantage is that it needs the least information from the system than any algorithm yet reported. It only detects the line side synchronization angle which can have detection errors within /spl plusmn//spl pi//6 radians under unity input power factor to provide accurate commutation. The last advantage of this scheme is that it can provide easier shut down sequences for the system. Theoretical analysis, simulation and experimental results are provided to verify its effectiveness in the paper.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信