基于全局线性模型的孟加拉语词性标注

Sankar Mukherjee, Shyamal Kumar Das Mandal
{"title":"基于全局线性模型的孟加拉语词性标注","authors":"Sankar Mukherjee, Shyamal Kumar Das Mandal","doi":"10.1109/INDCON.2013.6726132","DOIUrl":null,"url":null,"abstract":"The paper describes an automatic parts-of-speech tagging for Bengali sentences using Global Linear Model (GLM) which learns to represent the whole sentence through a feature vector called Global feature. Tagger has been trained using averaged perceptron algorithm. Performance of this tagger has been compared to Conditional Random Field (CRF), Support Vector Machine (SVM), Hidden Markov Model (HMM) and Maximum Entropy (ME) based Bengali POS tagger. Experimental results show that GLM based Bengali POS tagger has the accuracy of 93.12 %.","PeriodicalId":313185,"journal":{"name":"2013 Annual IEEE India Conference (INDICON)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Bengali parts-of-speech tagging using Global Linear Model\",\"authors\":\"Sankar Mukherjee, Shyamal Kumar Das Mandal\",\"doi\":\"10.1109/INDCON.2013.6726132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper describes an automatic parts-of-speech tagging for Bengali sentences using Global Linear Model (GLM) which learns to represent the whole sentence through a feature vector called Global feature. Tagger has been trained using averaged perceptron algorithm. Performance of this tagger has been compared to Conditional Random Field (CRF), Support Vector Machine (SVM), Hidden Markov Model (HMM) and Maximum Entropy (ME) based Bengali POS tagger. Experimental results show that GLM based Bengali POS tagger has the accuracy of 93.12 %.\",\"PeriodicalId\":313185,\"journal\":{\"name\":\"2013 Annual IEEE India Conference (INDICON)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Annual IEEE India Conference (INDICON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDCON.2013.6726132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Annual IEEE India Conference (INDICON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDCON.2013.6726132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文描述了一种基于全局线性模型(Global Linear Model, GLM)的孟加拉语句子词性自动标注方法,该方法通过全局特征向量来学习表示整个句子。使用平均感知器算法训练Tagger。将该标注器的性能与条件随机场(CRF)、支持向量机(SVM)、隐马尔可夫模型(HMM)和基于最大熵(ME)的孟加拉语POS标注器进行了比较。实验结果表明,基于GLM的孟加拉语词性标注准确率为93.12%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bengali parts-of-speech tagging using Global Linear Model
The paper describes an automatic parts-of-speech tagging for Bengali sentences using Global Linear Model (GLM) which learns to represent the whole sentence through a feature vector called Global feature. Tagger has been trained using averaged perceptron algorithm. Performance of this tagger has been compared to Conditional Random Field (CRF), Support Vector Machine (SVM), Hidden Markov Model (HMM) and Maximum Entropy (ME) based Bengali POS tagger. Experimental results show that GLM based Bengali POS tagger has the accuracy of 93.12 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信