季节内日最高气温数据的空间分位数自回归

Jorge Castillo-Mateo, J. Asín, A. Cebrián, A. Gelfand, J. Abaurrea
{"title":"季节内日最高气温数据的空间分位数自回归","authors":"Jorge Castillo-Mateo, J. Asín, A. Cebrián, A. Gelfand, J. Abaurrea","doi":"10.1214/22-aoas1719","DOIUrl":null,"url":null,"abstract":"Regression is the most widely used modeling tool in statistics. Quantile regression offers a strategy for enhancing the regression picture beyond custom-ary mean regression. With time series data, we move to quantile autoregression and, finally, with spatially referenced time series, we move to space-time quantile regression. Here, we are concerned with the spatio-temporal evolution of daily maximum temperature, particularly with regard to extreme heat. Our motivating dataset is 60 years of daily summer maximum temperature data over Aragón in Spain. Hence, we work with time on two scales—days within summer season across years—collected at geo-coded station locations. For a specified quantile, we fit a very flexible mixed effects autoregressive model, introducing four spatial processes. We work with asymmetric Laplace errors to take advantage of the available conditional Gaussian representation for these distributions. Further, while the auto-regressive model yields conditional quantiles, we demonstrate how to extract marginal quantiles with the asymmetric Laplace specification. Thus, we are able to interpolate quantiles for any days within years across our study region.","PeriodicalId":188068,"journal":{"name":"The Annals of Applied Statistics","volume":"96 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Spatial quantile autoregression for season within year daily maximum temperature data\",\"authors\":\"Jorge Castillo-Mateo, J. Asín, A. Cebrián, A. Gelfand, J. Abaurrea\",\"doi\":\"10.1214/22-aoas1719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Regression is the most widely used modeling tool in statistics. Quantile regression offers a strategy for enhancing the regression picture beyond custom-ary mean regression. With time series data, we move to quantile autoregression and, finally, with spatially referenced time series, we move to space-time quantile regression. Here, we are concerned with the spatio-temporal evolution of daily maximum temperature, particularly with regard to extreme heat. Our motivating dataset is 60 years of daily summer maximum temperature data over Aragón in Spain. Hence, we work with time on two scales—days within summer season across years—collected at geo-coded station locations. For a specified quantile, we fit a very flexible mixed effects autoregressive model, introducing four spatial processes. We work with asymmetric Laplace errors to take advantage of the available conditional Gaussian representation for these distributions. Further, while the auto-regressive model yields conditional quantiles, we demonstrate how to extract marginal quantiles with the asymmetric Laplace specification. Thus, we are able to interpolate quantiles for any days within years across our study region.\",\"PeriodicalId\":188068,\"journal\":{\"name\":\"The Annals of Applied Statistics\",\"volume\":\"96 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Annals of Applied Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aoas1719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Annals of Applied Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1214/22-aoas1719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

回归是统计学中应用最广泛的建模工具。分位数回归提供了一种超越自定义均值回归的增强回归图像的策略。对于时间序列数据,我们移动到分位数自回归,最后,对于空间参考时间序列,我们移动到时空分位数回归。在这里,我们关注的是日最高气温的时空演变,特别是在极端高温方面。我们的激励数据集是西班牙Aragón上60年来的每日夏季最高温度数据。因此,我们用两个尺度来研究时间——在不同年份夏季的天数——在地理编码的站点位置收集数据。对于指定的分位数,我们拟合了一个非常灵活的混合效应自回归模型,引入了四个空间过程。我们使用非对称拉普拉斯误差来利用这些分布的条件高斯表示。此外,当自回归模型产生条件分位数时,我们演示了如何使用不对称拉普拉斯规范提取边缘分位数。因此,我们能够在我们的研究区域内插入年内任何一天的分位数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spatial quantile autoregression for season within year daily maximum temperature data
Regression is the most widely used modeling tool in statistics. Quantile regression offers a strategy for enhancing the regression picture beyond custom-ary mean regression. With time series data, we move to quantile autoregression and, finally, with spatially referenced time series, we move to space-time quantile regression. Here, we are concerned with the spatio-temporal evolution of daily maximum temperature, particularly with regard to extreme heat. Our motivating dataset is 60 years of daily summer maximum temperature data over Aragón in Spain. Hence, we work with time on two scales—days within summer season across years—collected at geo-coded station locations. For a specified quantile, we fit a very flexible mixed effects autoregressive model, introducing four spatial processes. We work with asymmetric Laplace errors to take advantage of the available conditional Gaussian representation for these distributions. Further, while the auto-regressive model yields conditional quantiles, we demonstrate how to extract marginal quantiles with the asymmetric Laplace specification. Thus, we are able to interpolate quantiles for any days within years across our study region.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信