基于混合深度神经网络的DDoS检测

Vanlalruata Hnamte, J. Hussain
{"title":"基于混合深度神经网络的DDoS检测","authors":"Vanlalruata Hnamte, J. Hussain","doi":"10.1109/I2CT57861.2023.10126434","DOIUrl":null,"url":null,"abstract":"In this study, we provide Deep Neural Network (DNN) based approaches to detecting Distributed Denial-of-Service (DDoS) attacks. In order to improve the DNN’s accuracy, the suggested approaches use two different hybrid DNN scenario detections to demonstrate the possibilities. As training and testing data, we use the publicly available Intrusion Detection datasets; CIC-IDS2017 and CIC-DDoS2019. Experiments have shown that the presented approaches are 99.9% effective at detecting attacks.","PeriodicalId":150346,"journal":{"name":"2023 IEEE 8th International Conference for Convergence in Technology (I2CT)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DDoS Detection Using Hybrid Deep Neural Network Approaches\",\"authors\":\"Vanlalruata Hnamte, J. Hussain\",\"doi\":\"10.1109/I2CT57861.2023.10126434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we provide Deep Neural Network (DNN) based approaches to detecting Distributed Denial-of-Service (DDoS) attacks. In order to improve the DNN’s accuracy, the suggested approaches use two different hybrid DNN scenario detections to demonstrate the possibilities. As training and testing data, we use the publicly available Intrusion Detection datasets; CIC-IDS2017 and CIC-DDoS2019. Experiments have shown that the presented approaches are 99.9% effective at detecting attacks.\",\"PeriodicalId\":150346,\"journal\":{\"name\":\"2023 IEEE 8th International Conference for Convergence in Technology (I2CT)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 8th International Conference for Convergence in Technology (I2CT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I2CT57861.2023.10126434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 8th International Conference for Convergence in Technology (I2CT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2CT57861.2023.10126434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们提供了基于深度神经网络(DNN)的方法来检测分布式拒绝服务(DDoS)攻击。为了提高深度神经网络的准确性,建议的方法使用两种不同的混合深度神经网络场景检测来演示可能性。作为训练和测试数据,我们使用公开可用的入侵检测数据集;CIC-IDS2017和CIC-DDoS2019。实验表明,该方法检测攻击的效率为99.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DDoS Detection Using Hybrid Deep Neural Network Approaches
In this study, we provide Deep Neural Network (DNN) based approaches to detecting Distributed Denial-of-Service (DDoS) attacks. In order to improve the DNN’s accuracy, the suggested approaches use two different hybrid DNN scenario detections to demonstrate the possibilities. As training and testing data, we use the publicly available Intrusion Detection datasets; CIC-IDS2017 and CIC-DDoS2019. Experiments have shown that the presented approaches are 99.9% effective at detecting attacks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信