So Hasegawa, Masayuki Hiromoto, Akira Nakagawa, Y. Umeda
{"title":"用自监督学习改进场景图生成中的谓词表示","authors":"So Hasegawa, Masayuki Hiromoto, Akira Nakagawa, Y. Umeda","doi":"10.1109/WACV56688.2023.00276","DOIUrl":null,"url":null,"abstract":"Scene graph generation (SGG) aims to understand sophisticated visual information by detecting triplets of subject, object, and their relationship (predicate). Since the predicate labels are heavily imbalanced, existing supervised methods struggle to improve accuracy for the rare predicates due to insufficient labeled data. In this paper, we propose SePiR, a novel self-supervised learning method for SGG to improve the representation of rare predicates. We first train a relational encoder by contrastive learning without using predicate labels, and then fine-tune a predicate classifier with labeled data. To apply contrastive learning to SGG, we newly propose data augmentation in which subject-object pairs are augmented by replacing their visual features with those from other images having the same object labels. By such augmentation, we can increase the variation of the visual features while keeping the relationship between the objects. Comprehensive experimental results on the Visual Genome dataset show that the SGG performance of SePiR is comparable to the state-of-theart, and especially with the limited labeled dataset, our method significantly outperforms the existing supervised methods. Moreover, SePiR’s improved representation enables the model architecture simpler, resulting in 3.6x and 6.3x reduction of the parameters and inference time from the existing method, independently.","PeriodicalId":270631,"journal":{"name":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Predicate Representation in Scene Graph Generation by Self-Supervised Learning\",\"authors\":\"So Hasegawa, Masayuki Hiromoto, Akira Nakagawa, Y. Umeda\",\"doi\":\"10.1109/WACV56688.2023.00276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scene graph generation (SGG) aims to understand sophisticated visual information by detecting triplets of subject, object, and their relationship (predicate). Since the predicate labels are heavily imbalanced, existing supervised methods struggle to improve accuracy for the rare predicates due to insufficient labeled data. In this paper, we propose SePiR, a novel self-supervised learning method for SGG to improve the representation of rare predicates. We first train a relational encoder by contrastive learning without using predicate labels, and then fine-tune a predicate classifier with labeled data. To apply contrastive learning to SGG, we newly propose data augmentation in which subject-object pairs are augmented by replacing their visual features with those from other images having the same object labels. By such augmentation, we can increase the variation of the visual features while keeping the relationship between the objects. Comprehensive experimental results on the Visual Genome dataset show that the SGG performance of SePiR is comparable to the state-of-theart, and especially with the limited labeled dataset, our method significantly outperforms the existing supervised methods. Moreover, SePiR’s improved representation enables the model architecture simpler, resulting in 3.6x and 6.3x reduction of the parameters and inference time from the existing method, independently.\",\"PeriodicalId\":270631,\"journal\":{\"name\":\"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV56688.2023.00276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV56688.2023.00276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving Predicate Representation in Scene Graph Generation by Self-Supervised Learning
Scene graph generation (SGG) aims to understand sophisticated visual information by detecting triplets of subject, object, and their relationship (predicate). Since the predicate labels are heavily imbalanced, existing supervised methods struggle to improve accuracy for the rare predicates due to insufficient labeled data. In this paper, we propose SePiR, a novel self-supervised learning method for SGG to improve the representation of rare predicates. We first train a relational encoder by contrastive learning without using predicate labels, and then fine-tune a predicate classifier with labeled data. To apply contrastive learning to SGG, we newly propose data augmentation in which subject-object pairs are augmented by replacing their visual features with those from other images having the same object labels. By such augmentation, we can increase the variation of the visual features while keeping the relationship between the objects. Comprehensive experimental results on the Visual Genome dataset show that the SGG performance of SePiR is comparable to the state-of-theart, and especially with the limited labeled dataset, our method significantly outperforms the existing supervised methods. Moreover, SePiR’s improved representation enables the model architecture simpler, resulting in 3.6x and 6.3x reduction of the parameters and inference time from the existing method, independently.