连续时间贝叶斯网络中的因子性能函数与决策

Q1 Mathematics
Liessman Sturlaugson, Logan Perreault, John W. Sheppard
{"title":"连续时间贝叶斯网络中的因子性能函数与决策","authors":"Liessman Sturlaugson,&nbsp;Logan Perreault,&nbsp;John W. Sheppard","doi":"10.1016/j.jal.2016.11.030","DOIUrl":null,"url":null,"abstract":"<div><p>The continuous time Bayesian network (CTBN) is a probabilistic graphical model that enables reasoning about complex, interdependent, and continuous-time subsystems. The model uses nodes to denote subsystems and arcs to denote conditional dependence. This dependence manifests in how the dynamics of a subsystem changes based on the current states of its parents in the network. While the original CTBN definition allows users to specify the dynamics of how the system evolves, users might also want to place value expressions over the dynamics of the model in the form of performance functions. We formalize these performance functions for the CTBN and show how they can be factored in the same way as the network, allowing what we argue is a more intuitive and explicit representation. For cases in which a performance function must involve multiple nodes, we show how to augment the structure of the CTBN to account for the performance interaction while maintaining the factorization of a single performance function for each node. We introduce the notion of optimization for CTBNs, and show how a family of performance functions can be used as the evaluation criteria for a multi-objective optimization procedure.</p></div>","PeriodicalId":54881,"journal":{"name":"Journal of Applied Logic","volume":"22 ","pages":"Pages 28-45"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jal.2016.11.030","citationCount":"5","resultStr":"{\"title\":\"Factored performance functions and decision making in continuous time Bayesian networks\",\"authors\":\"Liessman Sturlaugson,&nbsp;Logan Perreault,&nbsp;John W. Sheppard\",\"doi\":\"10.1016/j.jal.2016.11.030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The continuous time Bayesian network (CTBN) is a probabilistic graphical model that enables reasoning about complex, interdependent, and continuous-time subsystems. The model uses nodes to denote subsystems and arcs to denote conditional dependence. This dependence manifests in how the dynamics of a subsystem changes based on the current states of its parents in the network. While the original CTBN definition allows users to specify the dynamics of how the system evolves, users might also want to place value expressions over the dynamics of the model in the form of performance functions. We formalize these performance functions for the CTBN and show how they can be factored in the same way as the network, allowing what we argue is a more intuitive and explicit representation. For cases in which a performance function must involve multiple nodes, we show how to augment the structure of the CTBN to account for the performance interaction while maintaining the factorization of a single performance function for each node. We introduce the notion of optimization for CTBNs, and show how a family of performance functions can be used as the evaluation criteria for a multi-objective optimization procedure.</p></div>\",\"PeriodicalId\":54881,\"journal\":{\"name\":\"Journal of Applied Logic\",\"volume\":\"22 \",\"pages\":\"Pages 28-45\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jal.2016.11.030\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570868316300878\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Logic","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570868316300878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5

摘要

连续时间贝叶斯网络(CTBN)是一种概率图模型,可以对复杂的、相互依赖的和连续时间的子系统进行推理。该模型用节点表示子系统,用圆弧表示条件依赖关系。这种依赖性体现在子系统的动态如何根据其在网络中的父节点的当前状态而变化。虽然原始的CTBN定义允许用户指定系统如何发展的动态,但用户可能还希望以性能函数的形式将值表达式置于模型的动态之上。我们形式化了CTBN的这些性能函数,并展示了它们如何以与网络相同的方式被分解,从而允许我们认为是更直观和显式的表示。对于性能函数必须涉及多个节点的情况,我们展示了如何增强CTBN的结构,以考虑性能交互,同时保持每个节点的单个性能函数的因式分解。我们介绍了ctbn优化的概念,并展示了如何将一系列性能函数用作多目标优化过程的评估标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Factored performance functions and decision making in continuous time Bayesian networks

The continuous time Bayesian network (CTBN) is a probabilistic graphical model that enables reasoning about complex, interdependent, and continuous-time subsystems. The model uses nodes to denote subsystems and arcs to denote conditional dependence. This dependence manifests in how the dynamics of a subsystem changes based on the current states of its parents in the network. While the original CTBN definition allows users to specify the dynamics of how the system evolves, users might also want to place value expressions over the dynamics of the model in the form of performance functions. We formalize these performance functions for the CTBN and show how they can be factored in the same way as the network, allowing what we argue is a more intuitive and explicit representation. For cases in which a performance function must involve multiple nodes, we show how to augment the structure of the CTBN to account for the performance interaction while maintaining the factorization of a single performance function for each node. We introduce the notion of optimization for CTBNs, and show how a family of performance functions can be used as the evaluation criteria for a multi-objective optimization procedure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Logic
Journal of Applied Logic COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
1.13
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Cessation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信