眼动序列统计与经典递归分析的假设检验

T. P. Keane, N. Cahill, J. Pelz
{"title":"眼动序列统计与经典递归分析的假设检验","authors":"T. P. Keane, N. Cahill, J. Pelz","doi":"10.1145/2578153.2578174","DOIUrl":null,"url":null,"abstract":"Dynamical systems analysis tools, like Recurrence Plotting (RP), allow for concise mathematical representations of complex systems with relatively simple descriptive metrics. These methods are invariant for phase-space trajectories of a time series from a dynamical system, allowing analyses on simplified data sets which preserve the system model's dynamics. In the past decade, recurrence methods have been applied to eye-tracking, but those analyses avoided Time-Delay Embedding (TDE). Without TDE, we lose the assumption that phase-space trajectories are being preserved in the recurrence plot. Thus, analysis has been typically limited to clustering fixation locations in the image space, instead of clustering data sequences in the phase space. We will show how classical recurrence analysis methods can be extended to allow for multi-modal data visualization and quantification, by presenting an open-source python implementation for analyzing eye movements.","PeriodicalId":142459,"journal":{"name":"Proceedings of the Symposium on Eye Tracking Research and Applications","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Eye-movement sequence statistics and hypothesis-testing with classical recurrence analysis\",\"authors\":\"T. P. Keane, N. Cahill, J. Pelz\",\"doi\":\"10.1145/2578153.2578174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dynamical systems analysis tools, like Recurrence Plotting (RP), allow for concise mathematical representations of complex systems with relatively simple descriptive metrics. These methods are invariant for phase-space trajectories of a time series from a dynamical system, allowing analyses on simplified data sets which preserve the system model's dynamics. In the past decade, recurrence methods have been applied to eye-tracking, but those analyses avoided Time-Delay Embedding (TDE). Without TDE, we lose the assumption that phase-space trajectories are being preserved in the recurrence plot. Thus, analysis has been typically limited to clustering fixation locations in the image space, instead of clustering data sequences in the phase space. We will show how classical recurrence analysis methods can be extended to allow for multi-modal data visualization and quantification, by presenting an open-source python implementation for analyzing eye movements.\",\"PeriodicalId\":142459,\"journal\":{\"name\":\"Proceedings of the Symposium on Eye Tracking Research and Applications\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Symposium on Eye Tracking Research and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2578153.2578174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Symposium on Eye Tracking Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2578153.2578174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

动态系统分析工具,如递归绘图(RP),允许用相对简单的描述性度量对复杂系统进行简明的数学表示。这些方法对于来自动态系统的时间序列的相空间轨迹是不变的,允许对保留系统模型动力学的简化数据集进行分析。在过去的十年中,递归方法被应用于眼动追踪,但这些分析都避免了时延嵌入(TDE)。没有TDE,我们就失去了相空间轨迹在递归图中被保留的假设。因此,分析通常局限于在图像空间中聚类固定位置,而不是在相空间中聚类数据序列。我们将展示如何扩展经典的递归分析方法,以允许多模态数据可视化和量化,通过展示一个开源的python实现来分析眼球运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Eye-movement sequence statistics and hypothesis-testing with classical recurrence analysis
Dynamical systems analysis tools, like Recurrence Plotting (RP), allow for concise mathematical representations of complex systems with relatively simple descriptive metrics. These methods are invariant for phase-space trajectories of a time series from a dynamical system, allowing analyses on simplified data sets which preserve the system model's dynamics. In the past decade, recurrence methods have been applied to eye-tracking, but those analyses avoided Time-Delay Embedding (TDE). Without TDE, we lose the assumption that phase-space trajectories are being preserved in the recurrence plot. Thus, analysis has been typically limited to clustering fixation locations in the image space, instead of clustering data sequences in the phase space. We will show how classical recurrence analysis methods can be extended to allow for multi-modal data visualization and quantification, by presenting an open-source python implementation for analyzing eye movements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信