{"title":"基于扩展卷积的U-Net结构海洋涡旋检测","authors":"Shaik John Saida, S. Ari","doi":"10.1109/SILCON55242.2022.10028960","DOIUrl":null,"url":null,"abstract":"Ocean eddies have a significant effect on the maritime environment. They are necessary for carrying a variety of ocean traces across the ocean. Eddy detection is one of the most active fields of physical oceanographic research. Although it is a new trend, using deep learning algorithms to find eddies is still in its early stages. The different sizes and shapes of eddies make automatic eddy segmentation challenging. U-Net makes a dense prediction to solve this problem. However, the network architecture is very intricate. In this paper, a dilated convolution U-Net is developed for the semantic segmentation of ocean eddies using sea surface height data. This technique decreases architectural complexity without sacrificing performance. Further, a new residual path is proposed to cascade encoder outputs with the decoder. The experimental results demonstrate that the proposed architecture outperforms the existing deep learning techniques for eddy detection.","PeriodicalId":183947,"journal":{"name":"2022 IEEE Silchar Subsection Conference (SILCON)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dilated Convolution based U-Net Architecture for Ocean Eddy Detection\",\"authors\":\"Shaik John Saida, S. Ari\",\"doi\":\"10.1109/SILCON55242.2022.10028960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ocean eddies have a significant effect on the maritime environment. They are necessary for carrying a variety of ocean traces across the ocean. Eddy detection is one of the most active fields of physical oceanographic research. Although it is a new trend, using deep learning algorithms to find eddies is still in its early stages. The different sizes and shapes of eddies make automatic eddy segmentation challenging. U-Net makes a dense prediction to solve this problem. However, the network architecture is very intricate. In this paper, a dilated convolution U-Net is developed for the semantic segmentation of ocean eddies using sea surface height data. This technique decreases architectural complexity without sacrificing performance. Further, a new residual path is proposed to cascade encoder outputs with the decoder. The experimental results demonstrate that the proposed architecture outperforms the existing deep learning techniques for eddy detection.\",\"PeriodicalId\":183947,\"journal\":{\"name\":\"2022 IEEE Silchar Subsection Conference (SILCON)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Silchar Subsection Conference (SILCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SILCON55242.2022.10028960\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Silchar Subsection Conference (SILCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SILCON55242.2022.10028960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dilated Convolution based U-Net Architecture for Ocean Eddy Detection
Ocean eddies have a significant effect on the maritime environment. They are necessary for carrying a variety of ocean traces across the ocean. Eddy detection is one of the most active fields of physical oceanographic research. Although it is a new trend, using deep learning algorithms to find eddies is still in its early stages. The different sizes and shapes of eddies make automatic eddy segmentation challenging. U-Net makes a dense prediction to solve this problem. However, the network architecture is very intricate. In this paper, a dilated convolution U-Net is developed for the semantic segmentation of ocean eddies using sea surface height data. This technique decreases architectural complexity without sacrificing performance. Further, a new residual path is proposed to cascade encoder outputs with the decoder. The experimental results demonstrate that the proposed architecture outperforms the existing deep learning techniques for eddy detection.