机器人网络中标量场映射的压缩和协同移动传感

M. Nguyen, Hung M. La, K. Teague
{"title":"机器人网络中标量场映射的压缩和协同移动传感","authors":"M. Nguyen, Hung M. La, K. Teague","doi":"10.1109/ALLERTON.2015.7447098","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a compressive and collaborative sensing (CCS) algorithm for distributed robotic networks to build scalar field map. A collaborative control law is utilized to steer the robots to move on the field while avoiding collision with each other and with obstacles. At each time instant, the robots collect, add measurements within their sensing range and exchange data with their neighbors to form compressive sensing (CS) measurements at each robot. After a certain times of moving and sampling, each robot can achieve that number of CS measurements to be able to reconstruct all sensory readings from the positions that the group of robots visited to build a scalar map. We further analyze and formulate the total communication power consumption associated with the number of robots, sensor communication range and provide suggestions for more energy saving.","PeriodicalId":112948,"journal":{"name":"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Compressive and collaborative mobile sensing for scalar field mapping in robotic networks\",\"authors\":\"M. Nguyen, Hung M. La, K. Teague\",\"doi\":\"10.1109/ALLERTON.2015.7447098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a compressive and collaborative sensing (CCS) algorithm for distributed robotic networks to build scalar field map. A collaborative control law is utilized to steer the robots to move on the field while avoiding collision with each other and with obstacles. At each time instant, the robots collect, add measurements within their sensing range and exchange data with their neighbors to form compressive sensing (CS) measurements at each robot. After a certain times of moving and sampling, each robot can achieve that number of CS measurements to be able to reconstruct all sensory readings from the positions that the group of robots visited to build a scalar map. We further analyze and formulate the total communication power consumption associated with the number of robots, sensor communication range and provide suggestions for more energy saving.\",\"PeriodicalId\":112948,\"journal\":{\"name\":\"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ALLERTON.2015.7447098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ALLERTON.2015.7447098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文提出了一种基于压缩协同感知的分布式机器人网络标量场图构建算法。利用协同控制律引导机器人在场地上移动,同时避免相互碰撞和与障碍物的碰撞。在每个时刻,机器人在其感知范围内收集、添加测量值,并与相邻机器人交换数据,形成每个机器人的压缩感知(CS)测量值。经过一定时间的移动和采样后,每个机器人可以实现一定数量的CS测量,从而能够从机器人组访问的位置重建所有感官读数,以构建标量地图。我们进一步分析和制定了与机器人数量、传感器通信范围相关的总通信功耗,并提出了进一步节能的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compressive and collaborative mobile sensing for scalar field mapping in robotic networks
In this paper, we propose a compressive and collaborative sensing (CCS) algorithm for distributed robotic networks to build scalar field map. A collaborative control law is utilized to steer the robots to move on the field while avoiding collision with each other and with obstacles. At each time instant, the robots collect, add measurements within their sensing range and exchange data with their neighbors to form compressive sensing (CS) measurements at each robot. After a certain times of moving and sampling, each robot can achieve that number of CS measurements to be able to reconstruct all sensory readings from the positions that the group of robots visited to build a scalar map. We further analyze and formulate the total communication power consumption associated with the number of robots, sensor communication range and provide suggestions for more energy saving.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信