论矩阵语法西拉德语言的复杂性

Liliana Cojocaru, E. Mäkinen
{"title":"论矩阵语法西拉德语言的复杂性","authors":"Liliana Cojocaru, E. Mäkinen","doi":"10.1109/SYNASC.2011.34","DOIUrl":null,"url":null,"abstract":"We investigate computational resources used by alternating Turing machines (ATMs) to accept Szilard languages (SZLs) of context-free matrix grammars (MGs). The main goal is to relate these languages to parallel complexity classes such as NC1 and NC2. We prove that unrestricted and leftmost-1 SZLs of context-free MGs, without appearance checking, can be accepted by ATMs in logarithmic time and space. Hence, these classes of languages belong to NC1 (under ALOGTIME reduction). Unrestricted SZLs of context-free MGs with appearance checking can be accepted by ATMs in logarithmic space and square logarithmic time. Consequently, this class is contained in NC2. We conclude with some results on SZLs of MGs with phrase-structure rules.","PeriodicalId":184344,"journal":{"name":"2011 13th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On the Complexity of Szilard Languages of Matrix Grammars\",\"authors\":\"Liliana Cojocaru, E. Mäkinen\",\"doi\":\"10.1109/SYNASC.2011.34\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate computational resources used by alternating Turing machines (ATMs) to accept Szilard languages (SZLs) of context-free matrix grammars (MGs). The main goal is to relate these languages to parallel complexity classes such as NC1 and NC2. We prove that unrestricted and leftmost-1 SZLs of context-free MGs, without appearance checking, can be accepted by ATMs in logarithmic time and space. Hence, these classes of languages belong to NC1 (under ALOGTIME reduction). Unrestricted SZLs of context-free MGs with appearance checking can be accepted by ATMs in logarithmic space and square logarithmic time. Consequently, this class is contained in NC2. We conclude with some results on SZLs of MGs with phrase-structure rules.\",\"PeriodicalId\":184344,\"journal\":{\"name\":\"2011 13th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 13th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2011.34\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 13th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2011.34","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们研究了交替图灵机(atm)用于接受上下文无关矩阵语法(mg)的西拉德语言(SZLs)的计算资源。主要目标是将这些语言与并行复杂性类(如NC1和NC2)联系起来。我们证明了在没有外观检查的情况下,上下文无关mg的无限制左1 szl可以在对数时间和空间上被atm接受。因此,这些语言类属于NC1(在ALOGTIME约简下)。自动取款机可以在对数空间和平方对数时间内接受具有外观检查的无上下文mg的无限制szl。因此,该类包含在NC2中。最后,我们得到了一些具有相结构规则的mggs的SZLs。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Complexity of Szilard Languages of Matrix Grammars
We investigate computational resources used by alternating Turing machines (ATMs) to accept Szilard languages (SZLs) of context-free matrix grammars (MGs). The main goal is to relate these languages to parallel complexity classes such as NC1 and NC2. We prove that unrestricted and leftmost-1 SZLs of context-free MGs, without appearance checking, can be accepted by ATMs in logarithmic time and space. Hence, these classes of languages belong to NC1 (under ALOGTIME reduction). Unrestricted SZLs of context-free MGs with appearance checking can be accepted by ATMs in logarithmic space and square logarithmic time. Consequently, this class is contained in NC2. We conclude with some results on SZLs of MGs with phrase-structure rules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信