Woohyeon Moon, Bumgeun Park, Sarvar Hussain Nengroo, Taeyoung Kim, Dongsoo Har
{"title":"基于强化学习的清扫机器人路径规划","authors":"Woohyeon Moon, Bumgeun Park, Sarvar Hussain Nengroo, Taeyoung Kim, Dongsoo Har","doi":"10.1109/ROSE56499.2022.9977430","DOIUrl":null,"url":null,"abstract":"Recently, as the demand for cleaning robots has steadily increased, therefore household electricity consumption is also increasing. To solve this electricity consumption issue, the problem of efficient path planning for cleaning robot has become important and many studies have been conducted. However, most of them are about moving along a simple path segment, not about the whole path to clean all places. As the emerging deep learning technique, reinforcement learning (RL) has been adopted for cleaning robot. However, the models for RL operate only in a specific cleaning environment, not the various cleaning environment. The problem is that the models have to retrain whenever the cleaning environment changes. To solve this problem, the proximal policy optimization (PPO) algorithm is combined with an efficient path planning that operates in various cleaning environments, using transfer learning (TL), detection nearest cleaned tile, reward shaping, and making elite set methods. The proposed method is validated with an ablation study and comparison with conventional methods such as random and zigzag. The experimental results demonstrate that the proposed method achieves improved training performance and increased convergence speed over the original PPO. And it also demonstrates that this proposed method is better performance than conventional methods (random, zigzag).","PeriodicalId":265529,"journal":{"name":"2022 IEEE International Symposium on Robotic and Sensors Environments (ROSE)","volume":"506 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Path Planning of Cleaning Robot with Reinforcement Learning\",\"authors\":\"Woohyeon Moon, Bumgeun Park, Sarvar Hussain Nengroo, Taeyoung Kim, Dongsoo Har\",\"doi\":\"10.1109/ROSE56499.2022.9977430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, as the demand for cleaning robots has steadily increased, therefore household electricity consumption is also increasing. To solve this electricity consumption issue, the problem of efficient path planning for cleaning robot has become important and many studies have been conducted. However, most of them are about moving along a simple path segment, not about the whole path to clean all places. As the emerging deep learning technique, reinforcement learning (RL) has been adopted for cleaning robot. However, the models for RL operate only in a specific cleaning environment, not the various cleaning environment. The problem is that the models have to retrain whenever the cleaning environment changes. To solve this problem, the proximal policy optimization (PPO) algorithm is combined with an efficient path planning that operates in various cleaning environments, using transfer learning (TL), detection nearest cleaned tile, reward shaping, and making elite set methods. The proposed method is validated with an ablation study and comparison with conventional methods such as random and zigzag. The experimental results demonstrate that the proposed method achieves improved training performance and increased convergence speed over the original PPO. And it also demonstrates that this proposed method is better performance than conventional methods (random, zigzag).\",\"PeriodicalId\":265529,\"journal\":{\"name\":\"2022 IEEE International Symposium on Robotic and Sensors Environments (ROSE)\",\"volume\":\"506 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Symposium on Robotic and Sensors Environments (ROSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROSE56499.2022.9977430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Robotic and Sensors Environments (ROSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROSE56499.2022.9977430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Path Planning of Cleaning Robot with Reinforcement Learning
Recently, as the demand for cleaning robots has steadily increased, therefore household electricity consumption is also increasing. To solve this electricity consumption issue, the problem of efficient path planning for cleaning robot has become important and many studies have been conducted. However, most of them are about moving along a simple path segment, not about the whole path to clean all places. As the emerging deep learning technique, reinforcement learning (RL) has been adopted for cleaning robot. However, the models for RL operate only in a specific cleaning environment, not the various cleaning environment. The problem is that the models have to retrain whenever the cleaning environment changes. To solve this problem, the proximal policy optimization (PPO) algorithm is combined with an efficient path planning that operates in various cleaning environments, using transfer learning (TL), detection nearest cleaned tile, reward shaping, and making elite set methods. The proposed method is validated with an ablation study and comparison with conventional methods such as random and zigzag. The experimental results demonstrate that the proposed method achieves improved training performance and increased convergence speed over the original PPO. And it also demonstrates that this proposed method is better performance than conventional methods (random, zigzag).