一种扩散模型,基于杰弗里斯型方程

S. Rukolaine, A. Samsonov
{"title":"一种扩散模型,基于杰弗里斯型方程","authors":"S. Rukolaine, A. Samsonov","doi":"10.1109/DD.2013.6712816","DOIUrl":null,"url":null,"abstract":"The diffusion equation (DE) is widely used for approximate description of non-anomalous diffusion and Brownian motion (BM). However, the DE is wrong in describing the mean-square displacement (MSD) of a particle at small values of time, where the MSD must be ballistic. We consider the equation of the Jeffreys type as a model equation for description of diffusion. We find that the MSD in the framework of this model is the same as that in the BM described by the standard Langevin equation.","PeriodicalId":340014,"journal":{"name":"Proceedings of the International Conference Days on Diffraction 2013","volume":"96 2-3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A model of diffusion, based on the equation of the Jeffreys type\",\"authors\":\"S. Rukolaine, A. Samsonov\",\"doi\":\"10.1109/DD.2013.6712816\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The diffusion equation (DE) is widely used for approximate description of non-anomalous diffusion and Brownian motion (BM). However, the DE is wrong in describing the mean-square displacement (MSD) of a particle at small values of time, where the MSD must be ballistic. We consider the equation of the Jeffreys type as a model equation for description of diffusion. We find that the MSD in the framework of this model is the same as that in the BM described by the standard Langevin equation.\",\"PeriodicalId\":340014,\"journal\":{\"name\":\"Proceedings of the International Conference Days on Diffraction 2013\",\"volume\":\"96 2-3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference Days on Diffraction 2013\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DD.2013.6712816\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference Days on Diffraction 2013","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DD.2013.6712816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

扩散方程(DE)被广泛用于近似描述非异常扩散和布朗运动(BM)。然而,DE在描述粒子在小时间值的均方位移(MSD)时是错误的,其中MSD必须是弹道的。我们考虑杰弗里斯型方程作为描述扩散的模型方程。我们发现该模型框架内的MSD与标准朗之万方程描述的BM中的MSD相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A model of diffusion, based on the equation of the Jeffreys type
The diffusion equation (DE) is widely used for approximate description of non-anomalous diffusion and Brownian motion (BM). However, the DE is wrong in describing the mean-square displacement (MSD) of a particle at small values of time, where the MSD must be ballistic. We consider the equation of the Jeffreys type as a model equation for description of diffusion. We find that the MSD in the framework of this model is the same as that in the BM described by the standard Langevin equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信