为用户视频摘要学习深度语义属性

Ke Sun, Jiasong Zhu, Zhuo Lei, Xianxu Hou, Qian Zhang, Jiang Duan, G. Qiu
{"title":"为用户视频摘要学习深度语义属性","authors":"Ke Sun, Jiasong Zhu, Zhuo Lei, Xianxu Hou, Qian Zhang, Jiang Duan, G. Qiu","doi":"10.1109/ICME.2017.8019411","DOIUrl":null,"url":null,"abstract":"This paper presents a Semantic Attribute assisted video SUMmarization framework (SASUM). Compared with traditional methods, SASUM has several innovative features. Firstly, we use a natural language processing tool to discover a set of keywords from an image and text corpora to form the semantic attributes of visual contents. Secondly, we train a deep convolution neural network to extract visual features as well as predict the semantic attributes of video segments which enables us to represent video contents with visual and semantic features simultaneously. Thirdly, we construct a temporally constrained video segment affinity matrix and use a partially near duplicate image discovery technique to cluster visually and semantically consistent video frames together. These frame clusters can then be condensed to form an informative and compact summary of the video. We will present experimental results to show the effectiveness of the semantic attributes in assisting the visual features in video summarization and our new technique achieves state-of-the-art performance.","PeriodicalId":330977,"journal":{"name":"2017 IEEE International Conference on Multimedia and Expo (ICME)","volume":"497 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Learning deep semantic attributes for user video summarization\",\"authors\":\"Ke Sun, Jiasong Zhu, Zhuo Lei, Xianxu Hou, Qian Zhang, Jiang Duan, G. Qiu\",\"doi\":\"10.1109/ICME.2017.8019411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a Semantic Attribute assisted video SUMmarization framework (SASUM). Compared with traditional methods, SASUM has several innovative features. Firstly, we use a natural language processing tool to discover a set of keywords from an image and text corpora to form the semantic attributes of visual contents. Secondly, we train a deep convolution neural network to extract visual features as well as predict the semantic attributes of video segments which enables us to represent video contents with visual and semantic features simultaneously. Thirdly, we construct a temporally constrained video segment affinity matrix and use a partially near duplicate image discovery technique to cluster visually and semantically consistent video frames together. These frame clusters can then be condensed to form an informative and compact summary of the video. We will present experimental results to show the effectiveness of the semantic attributes in assisting the visual features in video summarization and our new technique achieves state-of-the-art performance.\",\"PeriodicalId\":330977,\"journal\":{\"name\":\"2017 IEEE International Conference on Multimedia and Expo (ICME)\",\"volume\":\"497 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Multimedia and Expo (ICME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2017.8019411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2017.8019411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

提出了一种语义属性辅助视频摘要框架(SASUM)。与传统方法相比,SASUM有几个创新之处。首先,我们使用自然语言处理工具从图像和文本语料库中发现一组关键字,形成视觉内容的语义属性。其次,我们训练了一个深度卷积神经网络来提取视频片段的视觉特征和预测视频片段的语义属性,使我们能够同时用视觉和语义特征来表示视频内容。第三,我们构造了一个时间约束的视频片段关联矩阵,并使用部分近重复图像发现技术将视觉和语义一致的视频帧聚类在一起。然后,这些帧簇可以被压缩,形成一个信息丰富、紧凑的视频摘要。我们将用实验结果来证明语义属性在视频摘要中辅助视觉特征的有效性,并且我们的新技术达到了最先进的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning deep semantic attributes for user video summarization
This paper presents a Semantic Attribute assisted video SUMmarization framework (SASUM). Compared with traditional methods, SASUM has several innovative features. Firstly, we use a natural language processing tool to discover a set of keywords from an image and text corpora to form the semantic attributes of visual contents. Secondly, we train a deep convolution neural network to extract visual features as well as predict the semantic attributes of video segments which enables us to represent video contents with visual and semantic features simultaneously. Thirdly, we construct a temporally constrained video segment affinity matrix and use a partially near duplicate image discovery technique to cluster visually and semantically consistent video frames together. These frame clusters can then be condensed to form an informative and compact summary of the video. We will present experimental results to show the effectiveness of the semantic attributes in assisting the visual features in video summarization and our new technique achieves state-of-the-art performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信