离散时间非线性HJB解的近似动态规划:收敛证明

A. Al-Tamimi, F. Lewis
{"title":"离散时间非线性HJB解的近似动态规划:收敛证明","authors":"A. Al-Tamimi, F. Lewis","doi":"10.1109/ADPRL.2007.368167","DOIUrl":null,"url":null,"abstract":"In this paper, a greedy iteration scheme based on approximate dynamic programming (ADP), namely heuristic dynamic programming (HDP), is used to solve for the value function of the Hamilton Jacobi Bellman equation (HJB) that appears in discrete-time (DT) nonlinear optimal control. Two neural networks are used - one to approximate the value function and one to approximate the optimal control action. The importance of ADP is that it allows one to solve the HJB equation for general nonlinear discrete-time systems by using a neural network to approximate the value function. The importance of this paper is that the proof of convergence of the HDP iteration scheme is provided using rigorous methods for general discrete-time nonlinear systems with continuous state and action spaces. Two examples are provided in this paper. The first example is a linear system, where ADP is found to converge to the correct solution of the algebraic Riccati equation (ARE). The second example considers a nonlinear control system.","PeriodicalId":152536,"journal":{"name":"2007 IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"Discrete-time nonlinear HJB solution using Approximate dynamic programming: Convergence Proof\",\"authors\":\"A. Al-Tamimi, F. Lewis\",\"doi\":\"10.1109/ADPRL.2007.368167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a greedy iteration scheme based on approximate dynamic programming (ADP), namely heuristic dynamic programming (HDP), is used to solve for the value function of the Hamilton Jacobi Bellman equation (HJB) that appears in discrete-time (DT) nonlinear optimal control. Two neural networks are used - one to approximate the value function and one to approximate the optimal control action. The importance of ADP is that it allows one to solve the HJB equation for general nonlinear discrete-time systems by using a neural network to approximate the value function. The importance of this paper is that the proof of convergence of the HDP iteration scheme is provided using rigorous methods for general discrete-time nonlinear systems with continuous state and action spaces. Two examples are provided in this paper. The first example is a linear system, where ADP is found to converge to the correct solution of the algebraic Riccati equation (ARE). The second example considers a nonlinear control system.\",\"PeriodicalId\":152536,\"journal\":{\"name\":\"2007 IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ADPRL.2007.368167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Symposium on Approximate Dynamic Programming and Reinforcement Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ADPRL.2007.368167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

摘要

本文采用一种基于近似动态规划(ADP)的贪婪迭代方案,即启发式动态规划(HDP),求解离散时间(DT)非线性最优控制中出现的Hamilton Jacobi Bellman方程(HJB)的值函数。使用了两个神经网络,一个用于逼近值函数,另一个用于逼近最优控制动作。ADP的重要性在于,它允许人们利用神经网络逼近值函数来求解一般非线性离散系统的HJB方程。本文的重要意义在于用严格的方法证明了具有连续状态和作用空间的一般离散非线性系统的HDP迭代方案的收敛性。文中给出了两个实例。第一个例子是一个线性系统,其中ADP被发现收敛于代数Riccati方程(ARE)的正确解。第二个例子考虑一个非线性控制系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrete-time nonlinear HJB solution using Approximate dynamic programming: Convergence Proof
In this paper, a greedy iteration scheme based on approximate dynamic programming (ADP), namely heuristic dynamic programming (HDP), is used to solve for the value function of the Hamilton Jacobi Bellman equation (HJB) that appears in discrete-time (DT) nonlinear optimal control. Two neural networks are used - one to approximate the value function and one to approximate the optimal control action. The importance of ADP is that it allows one to solve the HJB equation for general nonlinear discrete-time systems by using a neural network to approximate the value function. The importance of this paper is that the proof of convergence of the HDP iteration scheme is provided using rigorous methods for general discrete-time nonlinear systems with continuous state and action spaces. Two examples are provided in this paper. The first example is a linear system, where ADP is found to converge to the correct solution of the algebraic Riccati equation (ARE). The second example considers a nonlinear control system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信