脉冲MIG焊接中坡口间隙和焊枪位置的神经网络感知

K. Eguchi, S. Yamane, S. Horinaka, T. Kubota, K. Oshima
{"title":"脉冲MIG焊接中坡口间隙和焊枪位置的神经网络感知","authors":"K. Eguchi, S. Yamane, S. Horinaka, T. Kubota, K. Oshima","doi":"10.1109/IECON.1997.668525","DOIUrl":null,"url":null,"abstract":"It is important to realize intelligent welding robots to obtain a good quality of the weld. For this purpose, it is required to detect root gap of the groove and deviation from center of the gap to center of the weaving. In order to simultaneously detect those, the authors propose an arc sensor using neural networks (NN). Both arc length and wire extension are found by NN. The root edges of the groove and its center are estimated geometrically. Training data are made from experimental results. Performance of the arc sensor is examined by giving testing data to the neural networks.","PeriodicalId":404447,"journal":{"name":"Proceedings of the IECON'97 23rd International Conference on Industrial Electronics, Control, and Instrumentation (Cat. No.97CH36066)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Sensing of groove gap and torch position using neural network in pulsed MIG welding\",\"authors\":\"K. Eguchi, S. Yamane, S. Horinaka, T. Kubota, K. Oshima\",\"doi\":\"10.1109/IECON.1997.668525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is important to realize intelligent welding robots to obtain a good quality of the weld. For this purpose, it is required to detect root gap of the groove and deviation from center of the gap to center of the weaving. In order to simultaneously detect those, the authors propose an arc sensor using neural networks (NN). Both arc length and wire extension are found by NN. The root edges of the groove and its center are estimated geometrically. Training data are made from experimental results. Performance of the arc sensor is examined by giving testing data to the neural networks.\",\"PeriodicalId\":404447,\"journal\":{\"name\":\"Proceedings of the IECON'97 23rd International Conference on Industrial Electronics, Control, and Instrumentation (Cat. No.97CH36066)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IECON'97 23rd International Conference on Industrial Electronics, Control, and Instrumentation (Cat. No.97CH36066)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IECON.1997.668525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IECON'97 23rd International Conference on Industrial Electronics, Control, and Instrumentation (Cat. No.97CH36066)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IECON.1997.668525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

实现智能焊接机器人是获得良好焊接质量的重要手段。为此,需要检测沟槽的根部间隙和间隙中心到织造中心的偏差。为了同时检测这些电弧,作者提出了一种基于神经网络(NN)的电弧传感器。用神经网络求出弧长和导线伸长。用几何方法估计槽的根边及其中心。训练数据来源于实验结果。通过向神经网络提供测试数据来检验电弧传感器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sensing of groove gap and torch position using neural network in pulsed MIG welding
It is important to realize intelligent welding robots to obtain a good quality of the weld. For this purpose, it is required to detect root gap of the groove and deviation from center of the gap to center of the weaving. In order to simultaneously detect those, the authors propose an arc sensor using neural networks (NN). Both arc length and wire extension are found by NN. The root edges of the groove and its center are estimated geometrically. Training data are made from experimental results. Performance of the arc sensor is examined by giving testing data to the neural networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信