一种基于迭代分割均值偏移聚类算法的彩色图像分割新方法

P Pedda Sadhu Naik, T. Gopal
{"title":"一种基于迭代分割均值偏移聚类算法的彩色图像分割新方法","authors":"P Pedda Sadhu Naik, T. Gopal","doi":"10.1109/ICCSP.2015.7322768","DOIUrl":null,"url":null,"abstract":"Segmentation is a process of partitioning the image into several objects. It plays a vital role in many fields such as satellite, remote sensing, object identification, face tracking and most importantly medical applications. Here in this paper, we here supposed to propose a novel image segmentation using iterative partitioning mean shift clustering algorithm, which overcomes the drawbacks of conventional clustering algorithms and provides a good segmented images. Simulation performance shows that the proposed scheme has performed superior to the existing clustering methods.","PeriodicalId":174192,"journal":{"name":"2015 International Conference on Communications and Signal Processing (ICCSP)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A novel approach for color image segmentation using iterative partitioning mean shift clustering algorithm\",\"authors\":\"P Pedda Sadhu Naik, T. Gopal\",\"doi\":\"10.1109/ICCSP.2015.7322768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Segmentation is a process of partitioning the image into several objects. It plays a vital role in many fields such as satellite, remote sensing, object identification, face tracking and most importantly medical applications. Here in this paper, we here supposed to propose a novel image segmentation using iterative partitioning mean shift clustering algorithm, which overcomes the drawbacks of conventional clustering algorithms and provides a good segmented images. Simulation performance shows that the proposed scheme has performed superior to the existing clustering methods.\",\"PeriodicalId\":174192,\"journal\":{\"name\":\"2015 International Conference on Communications and Signal Processing (ICCSP)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Communications and Signal Processing (ICCSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSP.2015.7322768\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Communications and Signal Processing (ICCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSP.2015.7322768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

分割是将图像分割成若干个对象的过程。它在卫星、遥感、目标识别、人脸跟踪以及最重要的医疗应用等许多领域发挥着至关重要的作用。本文提出了一种新的基于迭代分割均值偏移聚类算法的图像分割方法,克服了传统聚类算法的不足,提供了良好的分割图像。仿真结果表明,该方法优于现有的聚类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel approach for color image segmentation using iterative partitioning mean shift clustering algorithm
Segmentation is a process of partitioning the image into several objects. It plays a vital role in many fields such as satellite, remote sensing, object identification, face tracking and most importantly medical applications. Here in this paper, we here supposed to propose a novel image segmentation using iterative partitioning mean shift clustering algorithm, which overcomes the drawbacks of conventional clustering algorithms and provides a good segmented images. Simulation performance shows that the proposed scheme has performed superior to the existing clustering methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信