Web应用程序的故障安全测试

A. Andrews, Salah Boukhris, Salwa M. Elakeili
{"title":"Web应用程序的故障安全测试","authors":"A. Andrews, Salah Boukhris, Salwa M. Elakeili","doi":"10.1109/ASWEC.2014.29","DOIUrl":null,"url":null,"abstract":"This paper proposes a genetic algorithm (GA)method to generate test scenarios for testing proper fail-safe behavior for web applications. Unlike other approaches which combine fault trees with state charts, we create mitigation tests from an existing functional black box test suite. A genetic algorithm is used that determines points of failures and type of failure that need to be tested. Mitigation test paths are woven into the behavioral test at the point of failure based on failure specific weaving rules. The GA approach is compared to random selection. We also provide experimental results how effectiveness and efficiency vary based on mitigation defect density and length of the test suite.","PeriodicalId":430257,"journal":{"name":"2014 23rd Australian Software Engineering Conference","volume":"294 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Fail-Safe Testing of Web Applications\",\"authors\":\"A. Andrews, Salah Boukhris, Salwa M. Elakeili\",\"doi\":\"10.1109/ASWEC.2014.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a genetic algorithm (GA)method to generate test scenarios for testing proper fail-safe behavior for web applications. Unlike other approaches which combine fault trees with state charts, we create mitigation tests from an existing functional black box test suite. A genetic algorithm is used that determines points of failures and type of failure that need to be tested. Mitigation test paths are woven into the behavioral test at the point of failure based on failure specific weaving rules. The GA approach is compared to random selection. We also provide experimental results how effectiveness and efficiency vary based on mitigation defect density and length of the test suite.\",\"PeriodicalId\":430257,\"journal\":{\"name\":\"2014 23rd Australian Software Engineering Conference\",\"volume\":\"294 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 23rd Australian Software Engineering Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASWEC.2014.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 23rd Australian Software Engineering Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASWEC.2014.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种遗传算法(GA)方法来生成测试场景,以测试web应用程序的正确故障安全行为。与其他将故障树与状态图结合在一起的方法不同,我们从现有的功能黑盒测试套件中创建缓解测试。使用遗传算法来确定需要测试的故障点和故障类型。基于特定于故障的编织规则,在故障点将缓解测试路径编织到行为测试中。将遗传算法与随机选择方法进行了比较。我们还提供了基于缓解缺陷密度和测试套件长度的有效性和效率变化的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fail-Safe Testing of Web Applications
This paper proposes a genetic algorithm (GA)method to generate test scenarios for testing proper fail-safe behavior for web applications. Unlike other approaches which combine fault trees with state charts, we create mitigation tests from an existing functional black box test suite. A genetic algorithm is used that determines points of failures and type of failure that need to be tested. Mitigation test paths are woven into the behavioral test at the point of failure based on failure specific weaving rules. The GA approach is compared to random selection. We also provide experimental results how effectiveness and efficiency vary based on mitigation defect density and length of the test suite.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信