从图像中去除盐和胡椒的光谱算法

Olivier Rioul
{"title":"从图像中去除盐和胡椒的光谱算法","authors":"Olivier Rioul","doi":"10.1109/DSPWS.1996.555514","DOIUrl":null,"url":null,"abstract":"This paper presents an elegant solution to the impulse noise cancellation problem for images. The approach taken here is based on the theory of error-correcting (BCH) codes. Impulses are considered as \"errors\". The process is in two steps: First, find the error locations in the image; then, correct the error values. A first pass is made on the lines of the image, a second pass is then performed on the columns. Next the same procedure is repeated. In most cases, impulse noise is completely removed after a few iterations are performed.","PeriodicalId":131323,"journal":{"name":"1996 IEEE Digital Signal Processing Workshop Proceedings","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"A spectral algorithm for removing salt and pepper from images\",\"authors\":\"Olivier Rioul\",\"doi\":\"10.1109/DSPWS.1996.555514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an elegant solution to the impulse noise cancellation problem for images. The approach taken here is based on the theory of error-correcting (BCH) codes. Impulses are considered as \\\"errors\\\". The process is in two steps: First, find the error locations in the image; then, correct the error values. A first pass is made on the lines of the image, a second pass is then performed on the columns. Next the same procedure is repeated. In most cases, impulse noise is completely removed after a few iterations are performed.\",\"PeriodicalId\":131323,\"journal\":{\"name\":\"1996 IEEE Digital Signal Processing Workshop Proceedings\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1996-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1996 IEEE Digital Signal Processing Workshop Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DSPWS.1996.555514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1996 IEEE Digital Signal Processing Workshop Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSPWS.1996.555514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

摘要

本文提出了一种简便的图像脉冲噪声消除方法。本文采用的方法是基于纠错(BCH)码理论。冲动被认为是“错误”。该过程分为两步:首先,在图像中找到错误位置;然后,纠正错误值。在图像的线条上进行第一次传递,然后在列上执行第二次传递。接下来,重复同样的过程。在大多数情况下,经过几次迭代后,脉冲噪声被完全去除。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A spectral algorithm for removing salt and pepper from images
This paper presents an elegant solution to the impulse noise cancellation problem for images. The approach taken here is based on the theory of error-correcting (BCH) codes. Impulses are considered as "errors". The process is in two steps: First, find the error locations in the image; then, correct the error values. A first pass is made on the lines of the image, a second pass is then performed on the columns. Next the same procedure is repeated. In most cases, impulse noise is completely removed after a few iterations are performed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信