Nataliya Sokolovska, N. Hai, K. Clément, Jean-Daniel Zucker
{"title":"高效异构生物医学特征提取的深度自组织映射","authors":"Nataliya Sokolovska, N. Hai, K. Clément, Jean-Daniel Zucker","doi":"10.1109/IJCNN.2016.7727869","DOIUrl":null,"url":null,"abstract":"Feature selection is used to preserve significant properties of data in a compact space. In particular, feature selection is needed in applications, where information comes from multiple heterogeneous high dimensional sources. Data integration, however, is a challenge in itself. In our contribution, we introduce a feature selection framework based on powerful visualisation capabilities of self-organising maps, where the deep structure can be learned in a supervised or unsupervised manner. For a supervised version of the deep SOM, we propose to carry out inference with a linear SVM. A forward-backward procedure helps to converge to an optimal feature set. We show by experiments on real large-scale biomedical data set that the proposed methods embed data in a new compact meaningful representation, allow to visualise biomedical signatures, and also lead to a reasonable classification accuracy compared to the state-of-the-art methods.","PeriodicalId":109405,"journal":{"name":"2016 International Joint Conference on Neural Networks (IJCNN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Deep Self-Organising Maps for efficient heterogeneous biomedical signatures extraction\",\"authors\":\"Nataliya Sokolovska, N. Hai, K. Clément, Jean-Daniel Zucker\",\"doi\":\"10.1109/IJCNN.2016.7727869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature selection is used to preserve significant properties of data in a compact space. In particular, feature selection is needed in applications, where information comes from multiple heterogeneous high dimensional sources. Data integration, however, is a challenge in itself. In our contribution, we introduce a feature selection framework based on powerful visualisation capabilities of self-organising maps, where the deep structure can be learned in a supervised or unsupervised manner. For a supervised version of the deep SOM, we propose to carry out inference with a linear SVM. A forward-backward procedure helps to converge to an optimal feature set. We show by experiments on real large-scale biomedical data set that the proposed methods embed data in a new compact meaningful representation, allow to visualise biomedical signatures, and also lead to a reasonable classification accuracy compared to the state-of-the-art methods.\",\"PeriodicalId\":109405,\"journal\":{\"name\":\"2016 International Joint Conference on Neural Networks (IJCNN)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Joint Conference on Neural Networks (IJCNN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2016.7727869\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2016.7727869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Self-Organising Maps for efficient heterogeneous biomedical signatures extraction
Feature selection is used to preserve significant properties of data in a compact space. In particular, feature selection is needed in applications, where information comes from multiple heterogeneous high dimensional sources. Data integration, however, is a challenge in itself. In our contribution, we introduce a feature selection framework based on powerful visualisation capabilities of self-organising maps, where the deep structure can be learned in a supervised or unsupervised manner. For a supervised version of the deep SOM, we propose to carry out inference with a linear SVM. A forward-backward procedure helps to converge to an optimal feature set. We show by experiments on real large-scale biomedical data set that the proposed methods embed data in a new compact meaningful representation, allow to visualise biomedical signatures, and also lead to a reasonable classification accuracy compared to the state-of-the-art methods.