基于概念向量空间模型和贝叶斯的混合文本分类研究

Yaxiong Li, Dan Hu
{"title":"基于概念向量空间模型和贝叶斯的混合文本分类研究","authors":"Yaxiong Li, Dan Hu","doi":"10.1109/IALP.2009.64","DOIUrl":null,"url":null,"abstract":"Traditional vector-space-based text-classification models are established by calculating the weights of feature words on the lexical level. In such models, words are independent on one another and their semantic relations are unrevealed. This paper proposes a vector-space-based text analyzer by introducing conceptual semantic similarity into traditional vector-space-based models. Naive Bayes classification technology is also adopted into this new analyzer. Experiment results indicate that the new analyzer can improve text classification.","PeriodicalId":156840,"journal":{"name":"2009 International Conference on Asian Language Processing","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Study on the Classification of Mixed Text Based on Conceptual Vector Space Model and Bayes\",\"authors\":\"Yaxiong Li, Dan Hu\",\"doi\":\"10.1109/IALP.2009.64\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Traditional vector-space-based text-classification models are established by calculating the weights of feature words on the lexical level. In such models, words are independent on one another and their semantic relations are unrevealed. This paper proposes a vector-space-based text analyzer by introducing conceptual semantic similarity into traditional vector-space-based models. Naive Bayes classification technology is also adopted into this new analyzer. Experiment results indicate that the new analyzer can improve text classification.\",\"PeriodicalId\":156840,\"journal\":{\"name\":\"2009 International Conference on Asian Language Processing\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Conference on Asian Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IALP.2009.64\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Asian Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2009.64","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

传统的基于向量空间的文本分类模型是通过在词汇层面上计算特征词的权重来建立的。在这种模型中,词是相互独立的,它们之间的语义关系是不公开的。本文将概念语义相似度引入到传统的向量空间文本分析模型中,提出了一种基于向量空间的文本分析方法。该分析仪还采用了朴素贝叶斯分类技术。实验结果表明,该分析方法可以提高文本的分类效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on the Classification of Mixed Text Based on Conceptual Vector Space Model and Bayes
Traditional vector-space-based text-classification models are established by calculating the weights of feature words on the lexical level. In such models, words are independent on one another and their semantic relations are unrevealed. This paper proposes a vector-space-based text analyzer by introducing conceptual semantic similarity into traditional vector-space-based models. Naive Bayes classification technology is also adopted into this new analyzer. Experiment results indicate that the new analyzer can improve text classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信