脑机界面听觉稳态反应的随机共振证据

F. Tanaka, A. Matsubara, S. Nishifuji
{"title":"脑机界面听觉稳态反应的随机共振证据","authors":"F. Tanaka, A. Matsubara, S. Nishifuji","doi":"10.1109/GCCE.2015.7398638","DOIUrl":null,"url":null,"abstract":"Stochastic resonance is a phenomenon observed in nonlinear systems for which random noise with optimal level amplifies a weakly periodic signal. In some biological systems, stochastic resonance has been found to be utilized to improve signal transmission. Recently stochastic resonance have been evidenced in photic-driven human electroencephalogram (EEG) and demonstrated to improve performance of brain machine interface (BMI) based on steady state visual evoked potentials. The present study is aimed at giving evidence of stochastic resonance behavior in human auditory steady state response (ASSR) in EEG for developing a high-performance auditory BMI available without visual function. Seven healthy subjects aged 21-24 years old with normal hearing ability participated in the experiment in which their EEG responses to sinusoidally modulated tone with modulation frequency of 40 Hz contaminated by random noise were measured over the entire scalp with varying the carrier frequency (500 and 4,000 Hz), sound pressure of the tone (40-60 dB) and the random noise level (0-50 dB). In four subjects, ASSR amplitude showed a bell-shaped fluctuation with a maximum at noise level of 40 or 50 dB following an increase of noise level, hence the stochastic resonance effect may be elicited in the auditory system. Moreover in the four subjects, we investigated the times when ASSR significantly appeared under two conditions of no noise and the optimal noise that maximized ASSR amplitude. With addition of optimal noise, detection time of ASSR was shortened in three subjects, and ASSR was elicited in other subject. Detection time of ASSR at optimal noise was distributed between three and seven seconds across subjects. These results will be necessary in order to design novel ASSR-based BMIs. Further investigation on the stochastic resonance behavior would provide useful observation for development of auditory BMIs with high classification accuracy by improving the signal to noise ratio in the modulation of ASSR associated with user's intent.","PeriodicalId":363743,"journal":{"name":"2015 IEEE 4th Global Conference on Consumer Electronics (GCCE)","volume":"364 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Evidence of stochastic resonance of auditory steady-state response in electroencephalogram for brain machine interface\",\"authors\":\"F. Tanaka, A. Matsubara, S. Nishifuji\",\"doi\":\"10.1109/GCCE.2015.7398638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stochastic resonance is a phenomenon observed in nonlinear systems for which random noise with optimal level amplifies a weakly periodic signal. In some biological systems, stochastic resonance has been found to be utilized to improve signal transmission. Recently stochastic resonance have been evidenced in photic-driven human electroencephalogram (EEG) and demonstrated to improve performance of brain machine interface (BMI) based on steady state visual evoked potentials. The present study is aimed at giving evidence of stochastic resonance behavior in human auditory steady state response (ASSR) in EEG for developing a high-performance auditory BMI available without visual function. Seven healthy subjects aged 21-24 years old with normal hearing ability participated in the experiment in which their EEG responses to sinusoidally modulated tone with modulation frequency of 40 Hz contaminated by random noise were measured over the entire scalp with varying the carrier frequency (500 and 4,000 Hz), sound pressure of the tone (40-60 dB) and the random noise level (0-50 dB). In four subjects, ASSR amplitude showed a bell-shaped fluctuation with a maximum at noise level of 40 or 50 dB following an increase of noise level, hence the stochastic resonance effect may be elicited in the auditory system. Moreover in the four subjects, we investigated the times when ASSR significantly appeared under two conditions of no noise and the optimal noise that maximized ASSR amplitude. With addition of optimal noise, detection time of ASSR was shortened in three subjects, and ASSR was elicited in other subject. Detection time of ASSR at optimal noise was distributed between three and seven seconds across subjects. These results will be necessary in order to design novel ASSR-based BMIs. Further investigation on the stochastic resonance behavior would provide useful observation for development of auditory BMIs with high classification accuracy by improving the signal to noise ratio in the modulation of ASSR associated with user's intent.\",\"PeriodicalId\":363743,\"journal\":{\"name\":\"2015 IEEE 4th Global Conference on Consumer Electronics (GCCE)\",\"volume\":\"364 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE 4th Global Conference on Consumer Electronics (GCCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GCCE.2015.7398638\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 4th Global Conference on Consumer Electronics (GCCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCCE.2015.7398638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

随机共振是在非线性系统中观察到的一种现象,在非线性系统中,具有最佳电平的随机噪声放大了弱周期信号。在一些生物系统中,随机共振被用来改善信号的传输。近年来,随机共振已在光驱动的人脑电图(EEG)中得到证实,并被证明可以改善基于稳态视觉诱发电位的脑机接口(BMI)的性能。本研究旨在为开发无视觉功能的高性能听觉BMI提供脑电图中听觉稳态反应随机共振行为的证据。实验选取7名21 ~ 24岁听力正常的健康受试者,在全头皮范围内对随机噪声污染的调制频率为40 Hz的正弦波调音,在不同的载波频率(500和4000 Hz)、调音声压(40 ~ 60 dB)和随机噪声水平(0 ~ 50 dB)下进行脑电反应测量。在4名受试者中,ASSR振幅随噪声水平的增加呈钟形波动,在噪声水平为40或50 dB时最大,提示听觉系统可能存在随机共振效应。此外,我们还研究了在无噪声和最大ASSR幅值的最优噪声两种情况下,四名受试者ASSR显著出现的次数。添加最优噪声后,三个被试的ASSR检测时间被缩短,其他被试的ASSR被激发。在最佳噪声条件下,ASSR的检测时间分布在3 ~ 7秒之间。这些结果对于设计新的基于assr的bmi是必要的。通过对随机共振行为的进一步研究,可以提高与用户意图相关的ASSR调制中的信噪比,为发展具有高分类精度的听觉bmi提供有益的观察。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evidence of stochastic resonance of auditory steady-state response in electroencephalogram for brain machine interface
Stochastic resonance is a phenomenon observed in nonlinear systems for which random noise with optimal level amplifies a weakly periodic signal. In some biological systems, stochastic resonance has been found to be utilized to improve signal transmission. Recently stochastic resonance have been evidenced in photic-driven human electroencephalogram (EEG) and demonstrated to improve performance of brain machine interface (BMI) based on steady state visual evoked potentials. The present study is aimed at giving evidence of stochastic resonance behavior in human auditory steady state response (ASSR) in EEG for developing a high-performance auditory BMI available without visual function. Seven healthy subjects aged 21-24 years old with normal hearing ability participated in the experiment in which their EEG responses to sinusoidally modulated tone with modulation frequency of 40 Hz contaminated by random noise were measured over the entire scalp with varying the carrier frequency (500 and 4,000 Hz), sound pressure of the tone (40-60 dB) and the random noise level (0-50 dB). In four subjects, ASSR amplitude showed a bell-shaped fluctuation with a maximum at noise level of 40 or 50 dB following an increase of noise level, hence the stochastic resonance effect may be elicited in the auditory system. Moreover in the four subjects, we investigated the times when ASSR significantly appeared under two conditions of no noise and the optimal noise that maximized ASSR amplitude. With addition of optimal noise, detection time of ASSR was shortened in three subjects, and ASSR was elicited in other subject. Detection time of ASSR at optimal noise was distributed between three and seven seconds across subjects. These results will be necessary in order to design novel ASSR-based BMIs. Further investigation on the stochastic resonance behavior would provide useful observation for development of auditory BMIs with high classification accuracy by improving the signal to noise ratio in the modulation of ASSR associated with user's intent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信