基于自学习增量模型的锂离子电池健康状态与寿命预测

M. Camargos, P. Angelov
{"title":"基于自学习增量模型的锂离子电池健康状态与寿命预测","authors":"M. Camargos, P. Angelov","doi":"10.36001/phme.2022.v7i1.3323","DOIUrl":null,"url":null,"abstract":"Lithium-ion batteries are key energy storage elements in the context of environmental-aware energy systems representing a crucial technology to achieve the goal of zero carbon emission. Therefore, its conditions must be monitored to guarantee the safe and reliable operation of the systems that use these components. Furthermore, lithium-ion batteries’ prognostics and health management policies must cope with the nonlinear and time-varying nature of the complex electrochemical dynamics of battery degradation. This paper proposes an incremental-learning-based algorithm to estimate the State of Health (SoH) and the Remaining Useful Life (RUL) of lithium-ion batteries based on measurement data streams. For this purpose, a two-layer framework is proposed based on incremental modeling of the SoH. In the first layer, a set of representative features are extracted from voltage and current data of partial charging and discharging cycles; these features are then used to train the proposed model in a recursive procedure to estimate the battery’s SoH. The second layer uses the capacity data for incremental learning of an Autoregressive (AR) model for the SoH, which will be used to propagate the battery’s degradation through time to make the RUL prediction. The proposed method was applied to two datasets for experimental evaluation, one from CALCE and another from NASA. The proposed framework was able to estimate the SoH of 8 different lithium-ion cells with an average percentage error below 1.5% for all scenarios, while the lifetime model predicted the cell’s RUL with a maximum average error of 25%.","PeriodicalId":422825,"journal":{"name":"PHM Society European Conference","volume":"124 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"State of Health and Lifetime Prediction of Lithium-ion Batteries Using Self-learning Incremental Models\",\"authors\":\"M. Camargos, P. Angelov\",\"doi\":\"10.36001/phme.2022.v7i1.3323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lithium-ion batteries are key energy storage elements in the context of environmental-aware energy systems representing a crucial technology to achieve the goal of zero carbon emission. Therefore, its conditions must be monitored to guarantee the safe and reliable operation of the systems that use these components. Furthermore, lithium-ion batteries’ prognostics and health management policies must cope with the nonlinear and time-varying nature of the complex electrochemical dynamics of battery degradation. This paper proposes an incremental-learning-based algorithm to estimate the State of Health (SoH) and the Remaining Useful Life (RUL) of lithium-ion batteries based on measurement data streams. For this purpose, a two-layer framework is proposed based on incremental modeling of the SoH. In the first layer, a set of representative features are extracted from voltage and current data of partial charging and discharging cycles; these features are then used to train the proposed model in a recursive procedure to estimate the battery’s SoH. The second layer uses the capacity data for incremental learning of an Autoregressive (AR) model for the SoH, which will be used to propagate the battery’s degradation through time to make the RUL prediction. The proposed method was applied to two datasets for experimental evaluation, one from CALCE and another from NASA. The proposed framework was able to estimate the SoH of 8 different lithium-ion cells with an average percentage error below 1.5% for all scenarios, while the lifetime model predicted the cell’s RUL with a maximum average error of 25%.\",\"PeriodicalId\":422825,\"journal\":{\"name\":\"PHM Society European Conference\",\"volume\":\"124 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PHM Society European Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36001/phme.2022.v7i1.3323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PHM Society European Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36001/phme.2022.v7i1.3323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

锂离子电池是环境意识能源系统中的关键储能元件,是实现零碳排放目标的关键技术。因此,必须对其状态进行监控,以保证使用这些组件的系统安全可靠地运行。此外,锂离子电池的预测和健康管理政策必须应对电池退化复杂电化学动力学的非线性和时变性质。提出了一种基于增量学习的基于测量数据流的锂离子电池健康状态(SoH)和剩余使用寿命(RUL)估计算法。为此,提出了一个基于SoH增量建模的两层框架。第一层从局部充放电周期的电压和电流数据中提取一组具有代表性的特征;然后使用这些特征在递归过程中训练所提出的模型来估计电池的SoH。第二层使用容量数据对SoH的自回归(AR)模型进行增量学习,该模型将用于传播电池随时间的退化以进行RUL预测。将该方法应用于两个数据集进行实验评估,一个来自CALCE,另一个来自NASA。所提出的框架能够在所有情况下估计8种不同锂离子电池的SoH,平均百分比误差低于1.5%,而寿命模型预测电池的RUL的最大平均误差为25%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
State of Health and Lifetime Prediction of Lithium-ion Batteries Using Self-learning Incremental Models
Lithium-ion batteries are key energy storage elements in the context of environmental-aware energy systems representing a crucial technology to achieve the goal of zero carbon emission. Therefore, its conditions must be monitored to guarantee the safe and reliable operation of the systems that use these components. Furthermore, lithium-ion batteries’ prognostics and health management policies must cope with the nonlinear and time-varying nature of the complex electrochemical dynamics of battery degradation. This paper proposes an incremental-learning-based algorithm to estimate the State of Health (SoH) and the Remaining Useful Life (RUL) of lithium-ion batteries based on measurement data streams. For this purpose, a two-layer framework is proposed based on incremental modeling of the SoH. In the first layer, a set of representative features are extracted from voltage and current data of partial charging and discharging cycles; these features are then used to train the proposed model in a recursive procedure to estimate the battery’s SoH. The second layer uses the capacity data for incremental learning of an Autoregressive (AR) model for the SoH, which will be used to propagate the battery’s degradation through time to make the RUL prediction. The proposed method was applied to two datasets for experimental evaluation, one from CALCE and another from NASA. The proposed framework was able to estimate the SoH of 8 different lithium-ion cells with an average percentage error below 1.5% for all scenarios, while the lifetime model predicted the cell’s RUL with a maximum average error of 25%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信