单模李群上的异常流

D. Phong, Sebastien Picard, Xiangwen Zhang
{"title":"单模李群上的异常流","authors":"D. Phong, Sebastien Picard, Xiangwen Zhang","doi":"10.1090/conm/735/14828","DOIUrl":null,"url":null,"abstract":"The Hull-Strominger system for supersymmetric vacua of the heterotic string allows general unitary Hermitian connections with torsion and not just the Chern unitary connection. Solutions on unimodular Lie groups exploiting this flexibility were found by T. Fei and S.T. Yau. The Anomaly flow is a flow whose stationary points are precisely the solutions of the Hull-Strominger system. Here we examine its long-time behavior on unimodular Lie groups with general unitary Hermitian connections. We find a diverse and intricate behavior, which depends very much on the Lie group and the initial data.","PeriodicalId":139005,"journal":{"name":"Advances in Complex Geometry","volume":"486 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"The Anomaly flow on unimodular Lie\\n groups\",\"authors\":\"D. Phong, Sebastien Picard, Xiangwen Zhang\",\"doi\":\"10.1090/conm/735/14828\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Hull-Strominger system for supersymmetric vacua of the heterotic string allows general unitary Hermitian connections with torsion and not just the Chern unitary connection. Solutions on unimodular Lie groups exploiting this flexibility were found by T. Fei and S.T. Yau. The Anomaly flow is a flow whose stationary points are precisely the solutions of the Hull-Strominger system. Here we examine its long-time behavior on unimodular Lie groups with general unitary Hermitian connections. We find a diverse and intricate behavior, which depends very much on the Lie group and the initial data.\",\"PeriodicalId\":139005,\"journal\":{\"name\":\"Advances in Complex Geometry\",\"volume\":\"486 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Complex Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/conm/735/14828\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Complex Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/conm/735/14828","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

异质弦的超对称真空的Hull-Strominger系统允许具有扭转的一般幺正厄米连接,而不仅仅是陈恩幺正连接。利用这种灵活性的非模李群的解由T. Fei和st .T. Yau得到。异常流是一种静止点恰好是赫尔-施特罗明格系统解的流。本文研究了它在具有一般幺正厄密连接的单模李群上的长时间行为。我们发现了一种多样而复杂的行为,这在很大程度上取决于李群和初始数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Anomaly flow on unimodular Lie groups
The Hull-Strominger system for supersymmetric vacua of the heterotic string allows general unitary Hermitian connections with torsion and not just the Chern unitary connection. Solutions on unimodular Lie groups exploiting this flexibility were found by T. Fei and S.T. Yau. The Anomaly flow is a flow whose stationary points are precisely the solutions of the Hull-Strominger system. Here we examine its long-time behavior on unimodular Lie groups with general unitary Hermitian connections. We find a diverse and intricate behavior, which depends very much on the Lie group and the initial data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信