基于灰色模型和数据融合的导弹制导系统故障实时预测技术研究

Xinguo Wang, Aihua Li, Xiaoping Zhou, Hualong Xu
{"title":"基于灰色模型和数据融合的导弹制导系统故障实时预测技术研究","authors":"Xinguo Wang, Aihua Li, Xiaoping Zhou, Hualong Xu","doi":"10.1109/SNPD.2007.18","DOIUrl":null,"url":null,"abstract":"To solve fault forecast in missile guidance system, a new fault forecast method was presented, in which the grey system and multiple-sensor data fusion were used. Grey Model (GM) forecast is invalid when the data sequence is zero-mean random process, to overcome the drawback, present an improved GM method. The simulation results show the fault forecast method has better performance in missile guidance systems.","PeriodicalId":197058,"journal":{"name":"Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD 2007)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Research of Real-time Forecast Technology in Fault of Missile Guidance System Based on Grey Model and Data Fusion\",\"authors\":\"Xinguo Wang, Aihua Li, Xiaoping Zhou, Hualong Xu\",\"doi\":\"10.1109/SNPD.2007.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To solve fault forecast in missile guidance system, a new fault forecast method was presented, in which the grey system and multiple-sensor data fusion were used. Grey Model (GM) forecast is invalid when the data sequence is zero-mean random process, to overcome the drawback, present an improved GM method. The simulation results show the fault forecast method has better performance in missile guidance systems.\",\"PeriodicalId\":197058,\"journal\":{\"name\":\"Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD 2007)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SNPD.2007.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (SNPD 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNPD.2007.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

针对导弹制导系统故障预测问题,提出了一种基于灰色系统和多传感器数据融合的故障预测方法。针对数据序列为零均值随机过程时灰色模型预测无效的缺点,提出了一种改进的灰色模型预测方法。仿真结果表明,该方法在导弹制导系统中具有较好的故障预测效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research of Real-time Forecast Technology in Fault of Missile Guidance System Based on Grey Model and Data Fusion
To solve fault forecast in missile guidance system, a new fault forecast method was presented, in which the grey system and multiple-sensor data fusion were used. Grey Model (GM) forecast is invalid when the data sequence is zero-mean random process, to overcome the drawback, present an improved GM method. The simulation results show the fault forecast method has better performance in missile guidance systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信