非交换代数几何

S. P. Smith
{"title":"非交换代数几何","authors":"S. P. Smith","doi":"10.1142/9781800610286_0003","DOIUrl":null,"url":null,"abstract":"0 Introduction This is a reasonably faithful account of the ve lectures I delivered at the summer course \\Geometria Algebraica no Commutativa y Espacios Cuanti-cos\" for graduate students, in Spain, July 25{29, 1994. The material covered was, for the most part, an abridged version of Artin and Zhang's paper 2]. Fix a eld k. Given a Z-graded k-algebra, A say, which for simplicity is assumed to be left noetherian and locally nite dimensional, its non-commutative projective scheme is deened to be the pair proj(A) := (tails(A); A); where tails(A) is the quotient category of grmod(A), the category of nitely generated graded left A-modules, modulo its full subcategory of nite dimensional modules, and A is the image of the distinguished module A A in tails(A). If A is a quotient of a commutative polynomial ring generated in degree 1, Serre 4] proved that proj(A) is isomorphic (in an obvious sense) to","PeriodicalId":221102,"journal":{"name":"Mathematical Models in Science","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Non-Commutative Algebraic Geometry\",\"authors\":\"S. P. Smith\",\"doi\":\"10.1142/9781800610286_0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"0 Introduction This is a reasonably faithful account of the ve lectures I delivered at the summer course \\\\Geometria Algebraica no Commutativa y Espacios Cuanti-cos\\\" for graduate students, in Spain, July 25{29, 1994. The material covered was, for the most part, an abridged version of Artin and Zhang's paper 2]. Fix a eld k. Given a Z-graded k-algebra, A say, which for simplicity is assumed to be left noetherian and locally nite dimensional, its non-commutative projective scheme is deened to be the pair proj(A) := (tails(A); A); where tails(A) is the quotient category of grmod(A), the category of nitely generated graded left A-modules, modulo its full subcategory of nite dimensional modules, and A is the image of the distinguished module A A in tails(A). If A is a quotient of a commutative polynomial ring generated in degree 1, Serre 4] proved that proj(A) is isomorphic (in an obvious sense) to\",\"PeriodicalId\":221102,\"journal\":{\"name\":\"Mathematical Models in Science\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Models in Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/9781800610286_0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Models in Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/9781800610286_0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

这是我在1994年7月25日至29日在西班牙为研究生举办的暑期课程“几何与代数的交换性”上所做的五次讲座的相当忠实的记录。所涉及的材料大部分是Artin和Zhang论文的删节版[2]。固定一个域k。给定一个z级k-代数a,为了简单起见,假设它是左诺etheran和局部黑维的,它的非交换投影格式被认为是对投影j(a):= (tails(a);一个);式中,tails(A)为grmod(A)的商范畴,为纯生成的分级左A模的范畴,模其全维模的子范畴,A为区分模A A在tails(A)中的像。如果A是1次生成的交换多项式环的商,servre 4]证明了proj(A)与(在明显意义上)同构
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-Commutative Algebraic Geometry
0 Introduction This is a reasonably faithful account of the ve lectures I delivered at the summer course \Geometria Algebraica no Commutativa y Espacios Cuanti-cos" for graduate students, in Spain, July 25{29, 1994. The material covered was, for the most part, an abridged version of Artin and Zhang's paper 2]. Fix a eld k. Given a Z-graded k-algebra, A say, which for simplicity is assumed to be left noetherian and locally nite dimensional, its non-commutative projective scheme is deened to be the pair proj(A) := (tails(A); A); where tails(A) is the quotient category of grmod(A), the category of nitely generated graded left A-modules, modulo its full subcategory of nite dimensional modules, and A is the image of the distinguished module A A in tails(A). If A is a quotient of a commutative polynomial ring generated in degree 1, Serre 4] proved that proj(A) is isomorphic (in an obvious sense) to
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信